

Complex Variables Spring 2020

Assignment 3.1 Due February 12

Exercise 1. Show that for $z \in \mathbb{C}$ the principal value of \sqrt{z} is given by

$$\sqrt{\frac{|z| + \operatorname{Re} z}{2}} + i\operatorname{sgn}(\operatorname{Im} z)\sqrt{\frac{|z| - \operatorname{Re} z}{2}},$$

where $sgn(\cdot)$ is the sign function.

Exercise 2. Give necessary and sufficient conditions on $z, z_1, z_2 \in \mathbb{C}$ so that the following equations hold.

a. $\sqrt{z_1 z_2} = \sqrt{z_1} \sqrt{z_2}$. **b.** $\sqrt{z^2} = z$.

Exercise 3. Let $a \in \mathbb{R}^+$. For $z \in \mathbb{C} \setminus \{\pm a\}$, let

 $f(z) = \sqrt{z+a}\sqrt{z-a}.$

Show that f(z) defines a branch of $\sqrt{z^2 - a^2}$ that is continuous on $\Omega = \mathbb{C} \setminus [-a, a]$. Determine f(x + i0) and f(x - i0) for $x \in (-a, a)$. [Suggestion: In light of what we know about the function \sqrt{z} , it suffices to show that f(x + i0) = f(x - i0) for $x \in (-\infty, -a)$.]