Exercise 1. Show that for $z \in \mathbb{C}$ the principal value of \sqrt{z} is given by

$$
\sqrt{\frac{|z|+\operatorname{Re} z}{2}}+i \operatorname{sgn}(\operatorname{Im} z) \sqrt{\frac{|z|-\operatorname{Re} z}{2}}
$$

where $\operatorname{sgn}(\cdot)$ is the sign function.

Exercise 2. Give necessary and sufficient conditions on $z, z_{1}, z_{2} \in \mathbb{C}$ so that the following equations hold.
a. $\sqrt{z_{1} z_{2}}=\sqrt{z_{1}} \sqrt{z_{2}}$.
b. $\sqrt{z^{2}}=z$.

Exercise 3. Let $a \in \mathbb{R}^{+}$. For $z \in \mathbb{C} \backslash\{ \pm a\}$, let

$$
f(z)=\sqrt{z+a} \sqrt{z-a}
$$

Show that $f(z)$ defines a branch of $\sqrt{z^{2}-a^{2}}$ that is continuous on $\Omega=\mathbb{C} \backslash[-a, a]$. Determine $f(x+i 0)$ and $f(x-i 0)$ for $x \in(-a, a)$. [Suggestion: In light of what we know about the function \sqrt{z}, it suffices to show that $f(x+i 0)=f(x-i 0)$ for $x \in(-\infty,-a)$.]

