

 $\begin{array}{c} \text{Complex Variables} \\ \text{Spring 2020} \end{array}$

Assignment 5.2 Due February 26

Exercise 1. Let $a \in \mathbb{C}^{\times}$. Prove that the principal branch of $f(z) = z^a$ is analytic on $\mathbb{C} \setminus (-\infty, 0]$ with $f'(z) = az^{a-1}$.

Exercise 2. Prove that, when extended to complex-valued functions, the differential operators $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ are \mathbb{C} -linear and obey the product rule.

Exercise 3. Use the preceding exercise to show that the operators $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \overline{z}}$ are \mathbb{C} -linear and obey the product rule.

Exercise 4. Let $\Omega \subset \mathbb{C}$ be a domain and let $D: C^1(\Omega) \to C^0(\Omega)$ be a \mathbb{C} -linear operator that obeys the product rule. Prove that for any $f \in C^1(\Omega)$ and any $m \in \mathbb{N}$ one has $D(f^m) = mf^{m-1}D(f)$. [Suggestion: Induct on m.]