Exercise 1. Let $U, V \subset \mathbb{C}$ be domains, let $f: U \rightarrow \mathbb{C}$ be analytic with $f(U) \subset V$, and let $u: V \rightarrow \mathbb{R}$ be harmonic. Prove that $u \circ f: U \rightarrow \mathbb{R}$ is harmonic.

Exercise 2. Let $z, w \in \mathbb{C}$. Show that, when viewed as vectors in \mathbb{R}^{2}, one has

$$
z \cdot w=\frac{\bar{z} w+z \bar{w}}{2} \text { and } z \times w=\frac{\bar{z} w-z \bar{w}}{2 i} .
$$

Conclude that the complex product can be expressed in terms of the dot and cross products:

$$
z w=\bar{z} \cdot w+i(\bar{z} \times w)
$$

Exercise 3. Let $f=u+i v$ be an analytic function. Let $k=u\left(z_{0}\right)$ and $\ell=v\left(z_{0}\right)$. Prove that if $f^{\prime}\left(z_{0}\right) \neq 0$, then the contours $u(x, y)=k$ and $v(x, y)=\ell$ are orthogonal at z_{0}.

Exercise 4. Find an expression for the cross-ratio $\left[z_{0}, z_{1}, z_{2}, z_{3}\right]$ when $z_{j}=\infty$, for $j=$ $0,1,2,3$.

Exercise 5. Textbook exercise II.7.1.

Exercise 6. Textbook exercise II.7.9.

