P

Complex Variables Spring 2020

Assignment 8.2 Due April 1

Exercise 1. Textbook exercise III.5.2.

Exercise 2. Let f(z) be analytic and bounded on the right half-plane $\operatorname{Re} z > 0$. Suppose f(z) extends continuously to the imaginary axis and satisfies $|f(iy)| \leq M$ for all $y \in \mathbb{R}$. We will show that $|f(z)| \leq M$ throughout $\operatorname{Re} z > 0$.

Fix $\epsilon > 0$ and let $g_{\epsilon}(z) = \frac{f(z)}{(1+z)^{\epsilon}}$, where we are using the principal branch of w^{ϵ} . For R > 1 let Ω_R denote $\{\operatorname{Re} z > 0\} \cap \{|z+1| < R\}$ and let $C_R = \partial \Omega_R$.

- **a.** Show that if R is sufficiently large, then $|g_{\epsilon}(z)| \leq M$ on C_R . Conclude that $|g_{\epsilon}(z)| \leq M$ on Ω_R , when R is large enough.
- **b.** Use part **a** to prove that $|g_{\epsilon}(z)| \leq M$ everywhere on the right half-plane $\operatorname{Re} z > 0$.
- **c.** Use part **b** to show that $|f(z)| \leq M$ throughout the half-plane, by letting $\epsilon \to 0^+$ pointwise.