

Complex Variables Spring 2020

Exercise 1. In this exercise you will prove the following strengthening of Cauchy's theorem for rectangles.

Theorem 1. Let $\Omega \subset \mathbb{C}$ be a domain and $z_0 \in \Omega$. Suppose $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ is analytic and satisfies $\lim_{z\to z_0} (z-z_0)f(z) = 0$. If R is a closed rectangular region in Ω and $z_0 \notin \partial R$, then

$$\int_{\partial R} f(z) \, dz = 0.$$

- **a.** Explain why it suffices to assume z_0 is in the interior of *R*. [Suggestion: Appeal to the original version of Cauchy's theorem for rectangles.]
- **b.** Subdivide R as shown below. Let R_0 denote the shaded rectangle. Explain why

$$\int_{\partial R} f(z) \, dz = \int_{\partial R_0} f(z) \, dz$$

[Suggestion: See the previous suggestion.]

	←δ→	
δ.	$\overset{ullet}{Z}_0$	

- **c.** Let $\epsilon > 0$ and choose $\delta > 0$ so that $0 < |z z_0| < \delta$ implies $|(z z_0)f(z)| < \epsilon$. Show that $|f(z)| < 2\epsilon/\delta$ along ∂R_0 .
- **d.** Use an ML estimate to show that

$$\left|\int_{\partial R_0} f(z) \, dz\right| < 8\epsilon,$$

and use this to finish the proof.

Assignment 9.2 Due April 8