On the Differentiability of Certain Functions Defined by Path
Integrals

R. C. Daileda

Let 7 be a piecewise C! path in C, suppose g(z) is continuous on 7, and let n € N. Define f : C\ vy — C

by
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The purpose of this note is to provide a direct proof of the following result.

Theorem 1. The function f is analytic on C\ 7y and satisfies
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Proof. Fix zp € C\ 7. For w € C\ v we have
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Now let R = min{|z — 20| : # € v} > 0. Then |z — z9| > R for all z € . Moreover, if |w — z| < R/2,
then for any z € v we have
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Thus, for |w — z9| < R/2, along v we have
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Because ¢ is continuous and -« is compact, there is a constant M > 0 so that |g(z)| < M for z € 7. Our
work above then implies
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This can be made arbitrarily small by taking w sufficiently close to zy, proving that
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Since zo € C\ v was arbitrary, the statement of the theorem follows. O

Notice that f’(w)/n has the same form as f(w), but with the exponent n+1 in place of n. Because n € N
was arbitrary in Theorem 1, we can apply the theorem in the n+ 1 case to conclude that f/(w) = n- f'(w)/n
is analytic on C\ v, with
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An inductive argument can be used to show that this line of reasoning continues indefinitely.

Corollary 1. f is infinitely differentiable on C\ . For every k > 0,
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In particular, differentiation under the integral sign is valid.



