Fractional Linear Transformations

Ryan C. Daileda

Trinity University

Complex Variables

Daileda FLTs

Fractional Linear Transformations

We now consider a particular class of conformal maps.

Definition

A rational function of the form

$$
f(z)=\frac{a z+b}{c z+d}
$$

with $a, b, c, d \in \mathbb{C}$ and $a d-b c \neq 0$ is called a fractional linear transformation (FLT) (or Möbius transformation).

Notice

$$
f^{\prime}(z)=\frac{a(c z+d)-c(a z+b)}{(c z+d)^{2}}=\frac{a d-b c}{(c z+d)^{2}},
$$

so that FLTs are conformal where they are defined.

Example 1

Every linear function $f(z)=a z+b$ is an FLT (with $c=0, d=1$). These include the dilations $(z \mapsto a z)$ and translations $(z \mapsto z+b)$.

Example 2

The inversion $f(z)=1 / z$ is an FLT $(a=0, b=c=1, d=0)$.
If $c \neq 0$, then polynomial long division gives

$$
\frac{a z+b}{c z+d}=\frac{a}{c}-\frac{(a d-b c) / c}{c z+d} .
$$

Together with the $c=0$ case we find that:

Theorem 1

Every FLT is a composition of dilations, translations and inversions.

FLTs and $\widehat{\mathbb{C}}$

Every FLT $f(z)=\frac{a z+b}{c z+d}$ extends naturally to a map $\widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$.
The two questions to address are:
(1) How do we define $f(z)$ where $c z+d=0$?
(2) How do we define $f(\infty)$?

In both cases we will simply take a limit.
Recall that $z \rightarrow \infty$ in $\widehat{\mathbb{C}}$ provided $|z| \rightarrow \infty$ in \mathbb{R}.
The usual limit laws hold for limits to ∞. In particular,

$$
\lim _{z \rightarrow \infty} \frac{1}{z^{n}}=0
$$

for $n \in \mathbb{N}$.

Thus, if $c \neq 0$, then

$$
\lim _{z \rightarrow \infty} \frac{a z+b}{c z+d}=\lim _{z \rightarrow \infty} \frac{a+\frac{b}{z}}{c+\frac{d}{z}}=\frac{a+0}{c+0}=\frac{a}{c}
$$

For an FLT $f(z)=\frac{a z+b}{c z+d}(c \neq 0)$ we therefore define $f(\infty)=a / c$.
Since $c z+d$ vanishes when $z=-d / c, f(z)$ isn't defined there. However,

$$
\lim _{z \rightarrow-d / c} a z+b=\frac{-a d}{c}+b=\frac{b c-a d}{c} \neq 0 .
$$

It follows that $\frac{a z+b}{c z+d}$ can be made arbitrarily large as $z \rightarrow-d / c$.
So we set $f(-d / c)=\lim _{z \rightarrow-d / c} f(z)=\infty$.

If $c=0$, then $f(z)=a z+b$ with $a \neq 0$ (WLOG), which is entire.
By the reverse triangle inequality

$$
|f(z)| \geq||a|| z|-|b|| \geq|a||z|-|b| .
$$

As $z \rightarrow \infty$, the RHS can be made arbitrarily large, i.e. $f(z) \rightarrow \infty$.
So for FLTs of the form $f(z)=a z+b$ we define

$$
f(\infty)=\lim _{z \rightarrow \infty} a z+b=\infty .
$$

Note that in every case, we have extended our FLTs to be continuous throughout $\widehat{\mathbb{C}}$.

Inverses

Every $F L T f(z)=\frac{a z+b}{c z+d}$ on the extended plane $\widehat{\mathbb{C}}$ is invertible.
In fact, solving the equation $z=\frac{a w+b}{c w+d}$ for w yields

$$
w=\frac{d z-b}{-c z+a} .
$$

One can check that the FLT $g(z)=\frac{d z-b}{-c z+a}$ satisfies $g(f(z))=$ $f(g(z))=z$ at every extended value as well, e.g.

$$
f(g(a / c))=f(\infty)=a / c
$$

when $c \neq 0$.
So every FLT is invertible on $\widehat{\mathbb{C}}$, with inverse given by another FLT.

Composition

Because the identity function $f(z)=z$ is an FLT, and function composition is associative, we are one step away from showing the FLTs make up a group.

It remains to check a composition of FLTs is another FLT.
Let $f(z)=\frac{a z+b}{c z+d}$ and $g(z)=\frac{\alpha z+\beta}{\gamma z+\delta}$ be FLTs. Then

$$
f(g(z))=\frac{a(\alpha z+\beta)+b(\gamma z+\delta)}{c(\alpha z+\beta)+d(\gamma z+\delta)}=\frac{(a \alpha+b \gamma) z+(a \beta+b \delta)}{(c \alpha+d \gamma) z+(c \beta+d \delta)}
$$

This is an FLT since, as one can show

$$
(a \alpha+b \gamma)(c \beta+d \delta)-(a \beta+b \delta)(c \alpha+d \gamma)=(a d-b c)(\alpha \delta-\beta \gamma) \neq 0
$$

The set of FLTs is therefore a group under function composition.

Group Structure

Theorem 2

The set \mathcal{F} of fractional linear transformations is a group under composition of maps. \mathcal{F} is generated by dilations, translations and inversion.

There is another (perhaps now obvious) group theoretic connection.

Given $A=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{C})$, let $T_{A}(z)=\frac{a z+b}{c z+d}$. Then $T_{A} \in \mathcal{F}$ and the computations of the preceding slide show that

$$
T_{A} \circ T_{B}=T_{A B}
$$

That is, the map $\tau: \mathrm{GL}_{2}(\mathbb{C}) \rightarrow \mathcal{F}$ given by $A \mapsto T_{A}$ is a homomorphism, obviously surjective.

$\operatorname{ker} \tau$

T_{A} belongs to the kernel of τ if and only if T_{A} is the identity function $z \mapsto z$.

This means $T_{A}(z)=\frac{a z+b}{c z+d}=z$ for all z, or

$$
c z^{2}+(d-a) z-b=0
$$

for all $z \in \mathbb{C}$.
A nonzero polynomial has only finitely many roots, so this occurs iff $b=c=0$ and $a=d$, or $A=\left({ }^{a}{ }_{a}\right)=a l$, a scalar matrix.
So the kernel of τ consists precisely of the scalar matrices:

$$
\operatorname{ker} \tau=\left\{\left.\left(\begin{array}{ll}
a & \\
& a
\end{array}\right) \right\rvert\, a \in \mathbb{C}^{\times}\right\}=\mathbb{C}^{\times} I
$$

The Projective General Linear Group

The first isomorphism theorem now yields:

Theorem 3

The map $A \mapsto T_{A}$ induces an isomorphism between the projective general linear group $\mathrm{PGL}_{2}(\mathbb{C})=\mathrm{GL}_{2}(\mathbb{C}) / \mathbb{C}^{\times} I$ and the group \mathcal{F} of fractional linear transformations of \mathbb{C}.

Because elements in the same fiber differ by an element of the kernel, we have the following immediate consequence.

Corollary 1

Let $A, B \in \mathrm{GL}_{2}(\mathbb{C})$. Then $T_{A}=T_{B}$ if and only if there is a $\lambda \in \mathbb{C}^{\times}$so that $A=\lambda B$.

This completely answers the question of uniqueness of coefficients in an FLT.

Fixed Points

Let $f(z)=\frac{a z+b}{c z+d}$ be an FLT. A point $z_{0} \in \widehat{\mathbb{C}}$ is a fixed point of f provided $f\left(z_{0}\right)=z_{0}$.

We will use fixed points to help us distinguish FLTs.
Since $f(\infty)=a / c$ if $c \neq 0$, we find that ∞ is a fixed point iff $c=0$.

If $z_{0} \in \mathbb{C}$, then $f\left(z_{0}\right)=z_{0}$ if and only if $c z_{0}^{2}+(d-a) z_{0}-b=0$.
This has at most two solutions if $c \neq 0$, and at most one if $c=0$, unless $a=d$ and $b=0$, in which case f is trivial.

Theorem 4

A nonidentity FLT has at most two fixed points in $\widehat{\mathbb{C}}$.

Examples

Example 3

The only fixed point of the FLT $f(z)=z+1$ is $z=\infty$. The same is true of all translations.

Example 4

The fixed points of $f(z)=2 z$ are $z=0, \infty$. The same is true of all dilations.

Example 5

The fixed points of $f(z)=\frac{z+1}{z-1}$ are $z=1 \pm \sqrt{2}$.

Example 6

The only fixed point of $f(z)=\frac{3 z-1}{z+1}$ is $z=1$.

Values of FLTs

Theorem 5

If two FLTs agree at three points in $\widehat{\mathbb{C}}$, they are identical.
Proof. Let $f, g \in \mathcal{F}$. Suppose $z_{1}, z_{2}, z_{3} \in \widehat{\mathbb{C}}$ are distinct and that $f\left(z_{j}\right)=g\left(z_{j}\right)$ for $j=1,2,3$.
Then z_{1}, z_{2} and z_{3} are fixed points of $g^{-1} \circ f$.
Thus $g^{-1} \circ f=I$ and hence $f=g$.
So an FLT is determined by its values at any three points. To what extent can these be specified?

Lemma 1

Let $z_{1}, z_{2}, z_{3} \in \widehat{\mathbb{C}}$ be distinct. There is a unique FLT carrying z_{1}, z_{2}, z_{3} to $0,1, \infty$, respectively.

Proof. Uniqueness is guaranteed by the theorem. To establish existence, simply take

$$
\begin{equation*}
f(z)=\frac{z-z_{1}}{z-z_{3}} \frac{z_{2}-z_{3}}{z_{2}-z_{1}} \tag{1}
\end{equation*}
$$

Remark. If one of z_{1}, z_{2} or z_{3} is ∞, simply take the appropriate limit in (1).

For example, holding z, z_{2} and z_{3} fixed, we find that

$$
\lim _{z_{1} \rightarrow \infty} \frac{z-z_{1}}{z-z_{3}} \frac{z_{2}-z_{3}}{z_{2}-z_{1}}=\frac{z_{2}-z_{3}}{z-z_{3}}
$$

which carries ∞, z_{2}, z_{3} to $0,1, \infty$.

The Cross-Ratio

Definition

If $z_{0}, z_{1}, z_{2}, z_{3} \in \widehat{\mathbb{C}}$ are distinct, their cross-ratio is

$$
\left[z_{0}, z_{1}, z_{2}, z_{3}\right]=\frac{z_{0}-z_{1}}{z_{0}-z_{3}} \frac{z_{2}-z_{3}}{z_{2}-z_{1}},
$$

which is the image of z_{0} under the FLT carrying z_{1}, z_{2}, z_{3} to $0,1, \infty$.

We can use the cross-ratio to give a simple proof of the next result.

Theorem 6

Let $z_{1}, z_{2}, z_{3}, w_{1}, w_{2}, w_{3} \in \widehat{\mathbb{C}}$. If the z_{j} are pairwise distinct and the w_{j} are pairwise distinct, then there exists a unique $f \in \mathcal{F}$ so that $f\left(z_{j}\right)=w_{j}$ for $j=1,2,3$.

Invariance

Proof. Let $g(z)=\left[z, z_{1}, z_{2}, z_{3}\right]$ and $h(w)=\left[w, w_{1}, w_{2}, w_{3}\right]$.
Then $f=h^{-1} \circ g$ works, and is necessarily unique by Theorem 7.

One consequence of Theorem 8 is the invariance of the cross-ratio under FLTs.

Theorem 7

Let $z_{0}, z_{1}, z_{2}, z_{3} \in \widehat{\mathbb{C}}$ be distinct. For any $f \in \mathcal{F}$,

$$
\left[f\left(z_{0}\right), f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right)\right]=\left[z_{1}, z_{2}, z_{3}, z_{4}\right] .
$$

Proof. Let $g(z)=\left[z, z_{1}, z_{2}, z_{3}\right]$ and $h(w)=\left[w, f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right)\right]$.
Then $h^{-1} \circ g$ maps $z_{j} \mapsto f\left(z_{j}\right)$ for $j=1,2,3$.

By Theorem 7, this implies $h^{-1} \circ g=f$ or $g=h \circ f$.
Thus

$$
\left[f\left(z_{0}\right), f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right)\right]=h\left(f\left(z_{0}\right)\right)=g\left(z_{0}\right)=\left[z_{0}, z_{1}, z_{2}, z_{3}\right] .
$$

Preservation of the cross-ratio is related to the following important geometric property of FLTs.

Theorem 8

A fractional linear transformation $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ carries circles to circles.

Remark. A circle in $\widehat{\mathbb{C}}$ is a circle or line (circle through ∞) in \mathbb{C}.

Proof

By Theorem 1 it suffices to assume f is a translation, dilation or inversion. The result is clear if f is a translation or dilation.

So assume $f(z)=1 / z$. Recall the stereographic projection $\pi: \widehat{\mathbb{C}} \rightarrow S^{2}$.

Let R denote rotation rotation about the X-axis in \mathbb{R}^{3} by 180°.
According to exercise I.3.4, R corresponds to the inversion map $z \mapsto 1 / z$ on $\widehat{\mathbb{C}}$. That is,

$$
R=\pi \circ f \circ \pi^{-1} \Leftrightarrow f=\pi^{-1} \circ R \circ \pi .
$$

But π and R map circles to circles, so we're finished.

Application

Three distinct points $z_{1}, z_{2}, z_{3} \in \widehat{\mathbb{C}}$ uniquely determine a circle C.
If $f(z)$ is an FLT, $f(C)$ is a circle containing the distinct points $f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right)$. There is only one such circle.

Moral. To compute the image of a circle under an FLT, one need only compute the image of any three of its points.

Example 7

Show that $f(z)=\frac{i z-1}{i z+1}$ maps the real axis to the unit circle, the unit circle to the imaginary axis, and the imaginary axis to the real axis.

Solution

One easily checks that under f :

$$
-i \mapsto 0, \quad i \mapsto \infty, \quad \infty \mapsto 1, \quad 0 \mapsto-1, \quad 1 \mapsto i
$$

0,1 and ∞ are on the real axis and map to $-1, i, 1$ on the unit circle. Thus $\mathbb{R} \mapsto S^{1}$.
$1, i,-i$ on the unit circle map to $i, \infty, 0$ on the imaginary axis. Hence $S^{1} \mapsto i \mathbb{R}$.
$-i, 0$ and i on the imaginary axis map to $0,-1, \infty$ on the real axis. So $i \mathbb{R} \mapsto \mathbb{R}$.

Regions

Let $f(z)$ be an FLT, C be a circle in $\widehat{\mathbb{C}}$, and $C^{\prime}=f(C)$.
C divides $\widehat{\mathbb{C}}$ into two connected components, Ω_{1} and Ω_{2} (the "inside" and "outside" of C).

Likewise, C^{\prime} divides $\widehat{\mathbb{C}}$ into Ω_{1}^{\prime} and Ω_{2}^{\prime}.

Topological considerations imply that, after possibly relabeling, $f\left(\Omega_{j}\right)=\Omega_{j}^{\prime}, j=1,2$.

Conformality implies f preserves the relative orientation of these "sides" to C.

Example 8

Show that $f(z)=\frac{i z-1}{i z+1}$ maps the upper half-plane $H=\{z \mid \operatorname{Im} z>0\}$ to the complement D^{c} of the closed unit disk.

Solution. We have seen that f maps $0,1, \infty$ on the real axis to $-1, i, 1$ on the unit circle.

So f must map H to either the "inside" or the "outside" of the unit circle.

As we move along \mathbb{R} from 0 to 1 to ∞, H is on the left.
So as we move on the unit circle from -1 to i to 1 , the image of H must also be on the left, or "outside" the unit circle.

Hence f maps H to D^{c}.

Another Application

Finally, we can interpret the cross-ratio.

Theorem 9

Let $z_{0}, z_{1}, z_{2}, z_{3} \in \widehat{\mathbb{C}}$ be distinct. The cross-ratio $\left[z_{0}, z_{1}, z_{2}, z_{3}\right]$ is real if and only if $z_{0}, z_{1}, z_{2}, z_{3}$ lie on the same circle.

Proof. Let C be the circle through z_{1}, z_{2}, z_{3} and $f(z)=\left[z, z_{1}, z_{2}, z_{3}\right]$.
Then $f \in \mathcal{F}$ carries

Hence $f(C)=\widehat{\mathbb{R}}$.
So $f\left(z_{0}\right) \in \mathbb{R}$ if and only if $z_{0} \in C \backslash\left\{z_{3}\right\}$.

