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Fractional Linear Transformations

We now consider a particular class of conformal maps.

Definition

A rational function of the form

f (z) =
az + b

cz + d

with a, b, c , d ∈ C and ad − bc 6= 0 is called a fractional linear

transformation (FLT) (or Möbius transformation).

Notice

f ′(z) =
a(cz + d)− c(az + b)

(cz + d)2
=

ad − bc

(cz + d)2
,

so that FLTs are conformal where they are defined.
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Example 1

Every linear function f (z) = az + b is an FLT (with c = 0, d = 1).
These include the dilations (z 7→ az) and translations (z 7→ z + b).

Example 2

The inversion f (z) = 1/z is an FLT (a = 0,b = c = 1,d = 0).

If c 6= 0, then polynomial long division gives

az + b

cz + d
=

a

c
− (ad − bc)/c

cz + d
.

Together with the c = 0 case we find that:

Theorem 1

Every FLT is a composition of dilations, translations and inversions.
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FLTs and Ĉ

Every FLT f (z) = az+b
cz+d

extends naturally to a map Ĉ → Ĉ.

The two questions to address are:

1 How do we define f (z) where cz + d = 0?

2 How do we define f (∞)?

In both cases we will simply take a limit.

Recall that z → ∞ in Ĉ provided |z | → ∞ in R.

The usual limit laws hold for limits to ∞. In particular,

lim
z→∞

1

zn
= 0

for n ∈ N.
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c 6= 0

Thus, if c 6= 0, then

lim
z→∞

az + b

cz + d
= lim

z→∞

a + b
z

c + d
z

=
a+ 0

c + 0
=

a

c
.

For an FLT f (z) = az+b
cz+d

(c 6= 0) we therefore define f (∞) = a/c .

Since cz + d vanishes when z = −d/c , f (z) isn’t defined there.

However,

lim
z→−d/c

az + b =
−ad

c
+ b =

bc − ad

c
6= 0.

It follows that az+b
cz+d

can be made arbitrarily large as z → −d/c .

So we set f (−d/c) = lim
z→−d/c

f (z) = ∞.
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c = 0

If c = 0, then f (z) = az + b with a 6= 0 (WLOG), which is entire.

By the reverse triangle inequality

|f (z)| ≥
∣∣∣∣|a||z | − |b|

∣∣∣∣ ≥ |a||z | − |b|.

As z → ∞, the RHS can be made arbitrarily large, i.e. f (z) → ∞.

So for FLTs of the form f (z) = az + b we define

f (∞) = lim
z→∞

az + b = ∞.

Note that in every case, we have extended our FLTs to be
continuous throughout Ĉ.
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Inverses

Every FLT f (z) = az+b
cz+d

on the extended plane Ĉ is invertible.

In fact, solving the equation z = aw+b
cw+d

for w yields

w =
dz − b

−cz + a
.

One can check that the FLT g(z) = dz−b
−cz+a

satisfies g(f (z)) =
f (g(z)) = z at every extended value as well, e.g.

f (g(a/c)) = f (∞) = a/c

when c 6= 0.

So every FLT is invertible on Ĉ, with inverse given by another FLT.
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Composition

Because the identity function f (z) = z is an FLT, and function
composition is associative, we are one step away from showing the
FLTs make up a group.

It remains to check a composition of FLTs is another FLT.

Let f (z) = az+b
cz+d

and g(z) = αz+β
γz+δ be FLTs. Then

f (g(z)) =
a (αz + β) + b(γz + δ)

c(αz + β) + d(γz + δ)
=

(aα+ bγ)z + (aβ + bδ)

(cα+ dγ)z + (cβ + dδ)
.

This is an FLT since, as one can show

(aα+bγ)(cβ+dδ)−(aβ+bδ)(cα+dγ) = (ad−bc)(αδ−βγ) 6= 0.

The set of FLTs is therefore a group under function composition.
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Group Structure

Theorem 2

The set F of fractional linear transformations is a group under

composition of maps. F is generated by dilations, translations and

inversion.

There is another (perhaps now obvious) group theoretic
connection.

Given A =
(
a b
c d

)
∈ GL2(C), let TA(z) =

az+b
cz+d

. Then TA ∈ F and
the computations of the preceding slide show that

TA ◦ TB = TAB .

That is, the map τ : GL2(C) → F given by A 7→ TA is a homo-
morphism, obviously surjective.
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ker τ

TA belongs to the kernel of τ if and only if TA is the identity
function z 7→ z .

This means TA(z) =
az+b
cz+d

= z for all z , or

cz2 + (d − a)z − b = 0

for all z ∈ C.

A nonzero polynomial has only finitely many roots, so this occurs
iff b = c = 0 and a = d , or A = ( a a ) = aI , a scalar matrix.

So the kernel of τ consists precisely of the scalar matrices:

ker τ =

{(
a

a

) ∣∣∣∣ a ∈ C
×

}
= C

×I .
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The Projective General Linear Group

The first isomorphism theorem now yields:

Theorem 3

The map A 7→ TA induces an isomorphism between the projective
general linear group PGL2(C) = GL2(C)/C

×I and the group F of

fractional linear transformations of Ĉ.

Because elements in the same fiber differ by an element of the
kernel, we have the following immediate consequence.

Corollary 1

Let A,B ∈ GL2(C). Then TA = TB if and only if there is a

λ ∈ C
× so that A = λB.

This completely answers the question of uniqueness of coefficients
in an FLT.
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Fixed Points

Let f (z) = az+b
cz+d

be an FLT. A point z0 ∈ Ĉ is a fixed point of f
provided f (z0) = z0.

We will use fixed points to help us distinguish FLTs.

Since f (∞) = a/c if c 6= 0, we find that ∞ is a fixed point iff
c = 0.

If z0 ∈ C, then f (z0) = z0 if and only if cz20 + (d − a)z0 − b = 0.

This has at most two solutions if c 6= 0, and at most one if c = 0,
unless a = d and b = 0, in which case f is trivial.

Theorem 4

A nonidentity FLT has at most two fixed points in Ĉ.
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Examples

Example 3

The only fixed point of the FLT f (z) = z + 1 is z = ∞. The same
is true of all translations.

Example 4

The fixed points of f (z) = 2z are z = 0,∞. The same is true of
all dilations.

Example 5

The fixed points of f (z) = z+1
z−1

are z = 1±
√
2.

Example 6

The only fixed point of f (z) = 3z−1
z+1

is z = 1.
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Values of FLTs

Theorem 5

If two FLTs agree at three points in Ĉ, they are identical.

Proof. Let f , g ∈ F . Suppose z1, z2, z3 ∈ Ĉ are distinct and that
f (zj) = g(zj) for j = 1, 2, 3.

Then z1, z2 and z3 are fixed points of g−1 ◦ f .
Thus g−1 ◦ f = I and hence f = g .

So an FLT is determined by its values at any three points. To what
extent can these be specified?

Lemma 1

Let z1, z2, z3 ∈ Ĉ be distinct. There is a unique FLT carrying

z1, z2, z3 to 0, 1,∞, respectively.

Daileda FLTs
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Proof. Uniqueness is guaranteed by the theorem. To establish
existence, simply take

f (z) =
z − z1

z − z3

z2 − z3

z2 − z1
. (1)

Remark. If one of z1, z2 or z3 is ∞, simply take the appropriate
limit in (1).

For example, holding z , z2 and z3 fixed, we find that

lim
z1→∞

z − z1

z − z3

z2 − z3

z2 − z1
=

z2 − z3

z − z3
,

which carries ∞, z2, z3 to 0, 1,∞.
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The Cross-Ratio

Definition

If z0, z1, z2, z3 ∈ Ĉ are distinct, their cross-ratio is

[z0, z1, z2, z3] =
z0 − z1

z0 − z3

z2 − z3

z2 − z1
,

which is the image of z0 under the FLT carrying z1, z2, z3 to
0, 1,∞.

We can use the cross-ratio to give a simple proof of the next result.

Theorem 6

Let z1, z2, z3,w1,w2,w3 ∈ Ĉ. If the zj are pairwise distinct and the

wj are pairwise distinct, then there exists a unique f ∈ F so that

f (zj) = wj for j = 1, 2, 3.

Daileda FLTs
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Invariance

Proof. Let g(z) = [z , z1, z2, z3] and h(w) = [w ,w1,w2,w3].

Then f = h−1 ◦ g works, and is necessarily unique by Theorem
7.

One consequence of Theorem 8 is the invariance of the cross-ratio
under FLTs.

Theorem 7

Let z0, z1, z2, z3 ∈ Ĉ be distinct. For any f ∈ F ,

[f (z0), f (z1), f (z2), f (z3)] = [z1, z2, z3, z4].

Proof. Let g(z) = [z , z1, z2, z3] and h(w) = [w , f (z1), f (z2), f (z3)].

Then h−1 ◦ g maps zj 7→ f (zj) for j = 1, 2, 3.
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By Theorem 7, this implies h−1 ◦ g = f or g = h ◦ f .

Thus

[f (z0), f (z1), f (z2), f (z3)] = h(f (z0)) = g(z0) = [z0, z1, z2, z3].

Preservation of the cross-ratio is related to the following important
geometric property of FLTs.

Theorem 8

A fractional linear transformation f : Ĉ → Ĉ carries circles to

circles.

Remark. A circle in Ĉ is a circle or line (circle through ∞) in C.
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Proof

By Theorem 1 it suffices to assume f is a translation, dilation or
inversion. The result is clear if f is a translation or dilation.

So assume f (z) = 1/z . Recall the stereographic projection
π : Ĉ → S2.

Let R denote rotation rotation about the X -axis in R
3 by 180◦.

According to exercise I.3.4, R corresponds to the inversion map
z 7→ 1/z on Ĉ. That is,

R = π ◦ f ◦ π−1 ⇔ f = π−1 ◦ R ◦ π.

But π and R map circles to circles, so we’re finished.
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Application

Three distinct points z1, z2, z3 ∈ Ĉ uniquely determine a circle C .

If f (z) is an FLT, f (C ) is a circle containing the distinct points
f (z1), f (z2), f (z3). There is only one such circle.

Moral. To compute the image of a circle under an FLT, one need
only compute the image of any three of its points.

Example 7

Show that f (z) = iz−1
iz+1

maps the real axis to the unit circle, the
unit circle to the imaginary axis, and the imaginary axis to the real
axis.
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Solution

One easily checks that under f :

−i 7→ 0, i 7→ ∞, ∞ 7→ 1, 0 7→ −1, 1 7→ i .

0, 1 and ∞ are on the real axis and map to −1, i , 1 on the unit
circle. Thus R 7→ S1.

1, i , −i on the unit circle map to i , ∞, 0 on the imaginary axis.
Hence S1 7→ iR.

−i , 0 and i on the imaginary axis map to 0, −1, ∞ on the real
axis. So iR 7→ R.
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Definition FLTs on Ĉ Algebraic Structure Fixed Points The Cross-Ratio Geometry

Regions

Let f (z) be an FLT, C be a circle in Ĉ, and C ′ = f (C ).

C divides Ĉ into two connected components, Ω1 and Ω2 (the
“inside” and “outside” of C ).

Likewise, C ′ divides Ĉ into Ω′

1 and Ω′

2.

Topological considerations imply that, after possibly relabeling,
f (Ωj) = Ω′

j , j = 1, 2.

Conformality implies f preserves the relative orientation of these
“sides” to C .
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Example 8

Show that f (z) = iz−1
iz+1

maps the upper half-plane
H = {z | Im z > 0} to the complement Dc of the closed unit disk.

Solution. We have seen that f maps 0, 1, ∞ on the real axis to
−1, i , 1 on the unit circle.

So f must map H to either the “inside” or the “outside” of the
unit circle.

As we move along R from 0 to 1 to ∞, H is on the left.

So as we move on the unit circle from −1 to i to 1, the image of
H must also be on the left, or “outside” the unit circle.

Hence f maps H to Dc .
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Another Application

Finally, we can interpret the cross-ratio.

Theorem 9

Let z0, z1, z2, z3 ∈ Ĉ be distinct. The cross-ratio [z0, z1, z2, z3] is
real if and only if z0, z1, z2, z3 lie on the same circle.

Proof. Let C be the circle through z1, z2, z3 and f (z) = [z , z1, z2, z3].

Then f ∈ F carries
z1, z2, z3
on C

7→ 0, 1,∞
on R.

Hence f (C ) = R̂.

So f (z0) ∈ R if and only if z0 ∈ C \ {z3}.
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