Definition	FLTs on $\widehat{\mathbb{C}}$	Algebraic Structure	Fixed Points	The Cross-Ratio	Geometry

Fractional Linear Transformations

Ryan C. Daileda

Trinity University

Complex Variables

We now consider a particular class of conformal maps.

Definition

A rational function of the form

$$f(z) = \frac{az+b}{cz+d}$$

with $a, b, c, d \in \mathbb{C}$ and $ad - bc \neq 0$ is called a *fractional linear transformation* (FLT) (or *Möbius transformation*).

Notice

$$f'(z)=\frac{a(cz+d)-c(az+b)}{(cz+d)^2}=\frac{ad-bc}{(cz+d)^2},$$

so that FLTs are conformal where they are defined.

Example 1

Every linear function f(z) = az + b is an FLT (with c = 0, d = 1). These include the *dilations* $(z \mapsto az)$ and *translations* $(z \mapsto z + b)$.

Example 2

The inversion f(z) = 1/z is an FLT (a = 0, b = c = 1, d = 0).

If $c \neq 0$, then polynomial long division gives

$$\frac{az+b}{cz+d} = \frac{a}{c} - \frac{(ad-bc)/c}{cz+d}$$

Together with the c = 0 case we find that:

Theorem 1

Every FLT is a composition of dilations, translations and inversions.

Every FLT
$$f(z)=rac{az+b}{cz+d}$$
 extends naturally to a map $\widehat{\mathbb{C}}
ightarrow \widehat{\mathbb{C}}$.

The two questions to address are:

- How do we define f(z) where cz + d = 0?
- **2** How do we define $f(\infty)$?

In both cases we will simply take a limit.

Recall that $z \to \infty$ in $\widehat{\mathbb{C}}$ provided $|z| \to \infty$ in \mathbb{R} .

The usual limit laws hold for limits to ∞ . In particular,

$$\lim_{z\to\infty}\frac{1}{z^n}=0$$

for $n \in \mathbb{N}$.

Definition	FLTs on $\widehat{\mathbb{C}}$	Algebraic Structure	Fixed Points	The Cross-Ratio	Geometry
c eq 0					

Thus, if $c \neq 0$, then

$$\lim_{z\to\infty}\frac{az+b}{cz+d}=\lim_{z\to\infty}\frac{a+\frac{b}{z}}{c+\frac{d}{z}}=\frac{a+0}{c+0}=\frac{a}{c}.$$

For an FLT $f(z) = \frac{az+b}{cz+d}$ ($c \neq 0$) we therefore define $f(\infty) = a/c$. Since cz + d vanishes when z = -d/c, f(z) isn't defined there. However,

$$\lim_{z \to -d/c} az + b = \frac{-ad}{c} + b = \frac{bc - ad}{c} \neq 0.$$

It follows that $\frac{az+b}{cz+d}$ can be made arbitrarily large as $z \to -d/c$. So we set $f(-d/c) = \lim_{z \to -d/c} f(z) = \infty$.

If c = 0, then f(z) = az + b with $a \neq 0$ (WLOG), which is entire. By the reverse triangle inequality

$$|f(z)| \geq \left||a||z| - |b|\right| \geq |a||z| - |b|.$$

As $z \to \infty$, the RHS can be made arbitrarily large, i.e. $f(z) \to \infty$. So for FLTs of the form f(z) = az + b we define

$$f(\infty) = \lim_{z\to\infty} az + b = \infty.$$

Note that in every case, we have extended our FLTs to be continuous throughout $\widehat{\mathbb{C}}.$

Definition	FLTs on $\widehat{\mathbb{C}}$	Algebraic Structure	Fixed Points	The Cross-Ratio	Geometry
Inverses					

Every FLT
$$f(z) = rac{az+b}{cz+d}$$
 on the extended plane $\widehat{\mathbb{C}}$ is invertible.

In fact, solving the equation $z = \frac{aw+b}{cw+d}$ for w yields

$$w=\frac{dz-b}{-cz+a}.$$

One can check that the FLT $g(z) = \frac{dz-b}{-cz+a}$ satisfies g(f(z)) = f(g(z)) = z at every extended value as well, e.g.

$$f(g(a/c)) = f(\infty) = a/c$$

when $c \neq 0$.

So every FLT is invertible on $\widehat{\mathbb{C}},$ with inverse given by another FLT.

Definition	FLTs on $\widehat{\mathbb{C}}$	Algebraic Structure	Fixed Points	The Cross-Ratio	Geometry
Compo	sition				

Because the identity function f(z) = z is an FLT, and function composition is associative, we are one step away from showing the FLTs make up a group.

It remains to check a composition of FLTs is another FLT.

Let
$$f(z) = \frac{az+b}{cz+d}$$
 and $g(z) = \frac{\alpha z+\beta}{\gamma z+\delta}$ be FLTs. Then

$$f(g(z)) = \frac{a(\alpha z+\beta)+b(\gamma z+\delta)}{c(\alpha z+\beta)+d(\gamma z+\delta)} = \frac{(a\alpha + b\gamma)z+(a\beta + b\delta)}{(c\alpha + d\gamma)z+(c\beta + d\delta)}$$

This is an FLT since, as one can show

$$(a\alpha+b\gamma)(c\beta+d\delta)-(a\beta+b\delta)(c\alpha+d\gamma)=(ad-bc)(\alpha\delta-\beta\gamma)\neq 0.$$

The set of FLTs is therefore a group under function composition.

Theorem 2

The set \mathcal{F} of fractional linear transformations is a group under composition of maps. \mathcal{F} is generated by dilations, translations and inversion.

There is another (perhaps now obvious) group theoretic connection.

Given $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C})$, let $T_A(z) = \frac{az+b}{cz+d}$. Then $T_A \in \mathcal{F}$ and the computations of the preceding slide show that

$$T_A \circ T_B = T_{AB}.$$

That is, the map $\tau : GL_2(\mathbb{C}) \to \mathcal{F}$ given by $A \mapsto T_A$ is a homomorphism, obviously surjective.

 T_A belongs to the kernel of τ if and only if T_A is the identity function $z \mapsto z$.

This means $T_A(z) = \frac{az+b}{cz+d} = z$ for all z, or

$$cz^2+(d-a)z-b=0$$

for all $z \in \mathbb{C}$.

A nonzero polynomial has only finitely many roots, so this occurs iff b = c = 0 and a = d, or $A = \begin{pmatrix} a \\ a \end{pmatrix} = aI$, a scalar matrix.

So the kernel of τ consists precisely of the scalar matrices:

$$\ker \tau = \left\{ \begin{pmatrix} a \\ & a \end{pmatrix} \middle| a \in \mathbb{C}^{\times} \right\} = \mathbb{C}^{\times} I.$$

The Projective General Linear Group

The first isomorphism theorem now yields:

Theorem 3

The map $A \mapsto T_A$ induces an isomorphism between the projective general linear group $PGL_2(\mathbb{C}) = GL_2(\mathbb{C})/\mathbb{C}^{\times}I$ and the group \mathcal{F} of fractional linear transformations of $\widehat{\mathbb{C}}$.

Because elements in the same fiber differ by an element of the kernel, we have the following immediate consequence.

Corollary 1

Let $A, B \in GL_2(\mathbb{C})$. Then $T_A = T_B$ if and only if there is a $\lambda \in \mathbb{C}^{\times}$ so that $A = \lambda B$.

This completely answers the question of uniqueness of coefficients in an FLT.

Definition	FLTs on $\widetilde{\mathbb{C}}$	Algebraic Structure	Fixed Points	The Cross-Ratio	Geometry
Fixed F	Points				

Let $f(z) = \frac{az+b}{cz+d}$ be an FLT. A point $z_0 \in \widehat{\mathbb{C}}$ is a *fixed point* of f provided $f(z_0) = z_0$.

We will use fixed points to help us distinguish FLTs.

Since $f(\infty) = a/c$ if $c \neq 0$, we find that ∞ is a fixed point iff c = 0.

If $z_0 \in \mathbb{C}$, then $f(z_0) = z_0$ if and only if $cz_0^2 + (d-a)z_0 - b = 0$.

This has at most two solutions if $c \neq 0$, and at most one if c = 0, unless a = d and b = 0, in which case f is trivial.

Theorem 4

A nonidentity FLT has at most two fixed points in $\widehat{\mathbb{C}}$.

Definition	FLTs on $\widehat{\mathbb{C}}$	Algebraic Structure	Fixed Points	The Cross-Ratio	Geometry
Examp	oles				

Example 3

The only fixed point of the FLT f(z) = z + 1 is $z = \infty$. The same is true of all translations.

Example 4

The fixed points of f(z) = 2z are $z = 0, \infty$. The same is true of all dilations.

Example 5

The fixed points of
$$f(z) = rac{z+1}{z-1}$$
 are $z = 1 \pm \sqrt{2}$.

Example 6

The only fixed point of $f(z) = \frac{3z-1}{z+1}$ is z = 1.

Theorem 5

If two FLTs agree at three points in $\widehat{\mathbb{C}}$, they are identical.

Proof. Let $f, g \in \mathcal{F}$. Suppose $z_1, z_2, z_3 \in \widehat{\mathbb{C}}$ are distinct and that $f(z_j) = g(z_j)$ for j = 1, 2, 3.

Then z_1 , z_2 and z_3 are fixed points of $g^{-1} \circ f$.

Thus $g^{-1} \circ f = I$ and hence f = g.

So an FLT is determined by its values at any three points. To what extent can these be specified?

Lemma 1

Let $z_1, z_2, z_3 \in \widehat{\mathbb{C}}$ be distinct. There is a unique FLT carrying z_1, z_2, z_3 to $0, 1, \infty$, respectively.

Proof. Uniqueness is guaranteed by the theorem. To establish existence, simply take

$$f(z) = \frac{z - z_1}{z - z_3} \frac{z_2 - z_3}{z_2 - z_1}.$$
 (1)

Remark. If one of z_1, z_2 or z_3 is ∞ , simply take the appropriate limit in (1).

For example, holding z, z_2 and z_3 fixed, we find that

$$\lim_{z_1\to\infty}\frac{z-z_1}{z-z_3}\frac{z_2-z_3}{z_2-z_1}=\frac{z_2-z_3}{z-z_3},$$

which carries ∞ , z_2 , z_3 to $0, 1, \infty$.

Definition

If $z_0, z_1, z_2, z_3 \in \widehat{\mathbb{C}}$ are distinct, their *cross-ratio* is

$$[z_0, z_1, z_2, z_3] = \frac{z_0 - z_1}{z_0 - z_3} \frac{z_2 - z_3}{z_2 - z_1},$$

which is the image of z_0 under the FLT carrying z_1, z_2, z_3 to $0, 1, \infty$.

We can use the cross-ratio to give a simple proof of the next result.

Theorem 6

Let $z_1, z_2, z_3, w_1, w_2, w_3 \in \widehat{\mathbb{C}}$. If the z_j are pairwise distinct and the w_j are pairwise distinct, then there exists a unique $f \in \mathcal{F}$ so that $f(z_j) = w_j$ for j = 1, 2, 3.

Proof. Let
$$g(z) = [z, z_1, z_2, z_3]$$
 and $h(w) = [w, w_1, w_2, w_3]$.

Then $f = h^{-1} \circ g$ works, and is necessarily unique by Theorem 7.

One consequence of Theorem 8 is the invariance of the cross-ratio under FLTs.

Theorem 7

Let $z_0, z_1, z_2, z_3 \in \widehat{\mathbb{C}}$ be distinct. For any $f \in \mathcal{F}$,

$$[f(z_0), f(z_1), f(z_2), f(z_3)] = [z_1, z_2, z_3, z_4].$$

Proof. Let $g(z) = [z, z_1, z_2, z_3]$ and $h(w) = [w, f(z_1), f(z_2), f(z_3)]$. Then $h^{-1} \circ g$ maps $z_j \mapsto f(z_j)$ for j = 1, 2, 3. By Theorem 7, this implies $h^{-1} \circ g = f$ or $g = h \circ f$.

Thus

$$f(z_0), f(z_1), f(z_2), f(z_3)] = h(f(z_0)) = g(z_0) = [z_0, z_1, z_2, z_3].$$

Preservation of the cross-ratio is related to the following important geometric property of FLTs.

Theorem 8

A fractional linear transformation $f:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ carries circles to circles.

Remark. A *circle* in $\widehat{\mathbb{C}}$ is a circle or line (circle through ∞) in \mathbb{C} .

By Theorem 1 it suffices to assume f is a translation, dilation or inversion. The result is clear if f is a translation or dilation.

So assume f(z) = 1/z. Recall the stereographic projection $\pi : \widehat{\mathbb{C}} \to S^2$.

Let *R* denote rotation rotation about the *X*-axis in \mathbb{R}^3 by 180°.

According to exercise I.3.4, R corresponds to the inversion map $z\mapsto 1/z$ on $\widehat{\mathbb{C}}.$ That is,

$$R = \pi \circ f \circ \pi^{-1} \iff f = \pi^{-1} \circ R \circ \pi.$$

But π and R map circles to circles, so we're finished.

Three distinct points $z_1, z_2, z_3 \in \widehat{\mathbb{C}}$ uniquely determine a circle *C*.

If f(z) is an FLT, f(C) is a circle containing the distinct points $f(z_1)$, $f(z_2)$, $f(z_3)$. There is only one such circle.

Moral. To compute the image of a circle under an FLT, one need only compute the image of any three of its points.

Example 7

Show that $f(z) = \frac{iz-1}{iz+1}$ maps the real axis to the unit circle, the unit circle to the imaginary axis, and the imaginary axis to the real axis.

One easily checks that under f:

$$-i \mapsto 0, \quad i \mapsto \infty, \quad \infty \mapsto 1, \quad 0 \mapsto -1, \quad 1 \mapsto i.$$

0, 1 and ∞ are on the real axis and map to -1, *i*, 1 on the unit circle. Thus $\mathbb{R} \mapsto S^1$.

1, *i*, -i on the unit circle map to *i*, ∞ , 0 on the imaginary axis. Hence $S^1 \mapsto i\mathbb{R}$.

-i, 0 and i on the imaginary axis map to 0, -1, ∞ on the real axis. So $i\mathbb{R} \mapsto \mathbb{R}$.

Let f(z) be an FLT, C be a circle in $\widehat{\mathbb{C}}$, and C' = f(C).

C divides $\widehat{\mathbb{C}}$ into two connected components, Ω_1 and Ω_2 (the "inside" and "outside" of *C*).

Likewise, C' divides $\widehat{\mathbb{C}}$ into Ω'_1 and Ω'_2 .

Topological considerations imply that, after possibly relabeling, $f(\Omega_j) = \Omega'_j$, j = 1, 2.

Conformality implies f preserves the relative orientation of these "sides" to C.

Definition	FLTs on $\mathbb C$	Algebraic Structure	Fixed Points	The Cross-Ratio	Geometry

Example 8

Show that $f(z) = \frac{iz-1}{iz+1}$ maps the upper half-plane $H = \{z \mid \text{Im } z > 0\}$ to the complement D^c of the closed unit disk.

Solution. We have seen that f maps 0, 1, ∞ on the real axis to -1, i, 1 on the unit circle.

So f must map H to either the "inside" or the "outside" of the unit circle.

As we move along $\mathbb R$ from 0 to 1 to ∞ , *H* is on the left.

So as we move on the unit circle from -1 to *i* to 1, the image of *H* must also be on the left, or "outside" the unit circle.

Hence f maps H to D^c .

Finally, we can interpret the cross-ratio.

Theorem 9

Let $z_0, z_1, z_2, z_3 \in \widehat{\mathbb{C}}$ be distinct. The cross-ratio $[z_0, z_1, z_2, z_3]$ is real if and only if z_0, z_1, z_2, z_3 lie on the same circle.

Proof. Let C be the circle through z_1, z_2, z_3 and $f(z) = [z, z_1, z_2, z_3]$.

Then $f \in \mathcal{F}$ carries

$$egin{array}{ccc} z_1, z_2, z_3 & & 0, 1, \infty \ & \text{on } C & & \text{on } \mathbb{R}. \end{array}$$

Hence $f(C) = \widehat{\mathbb{R}}$.

So $f(z_0) \in \mathbb{R}$ if and only if $z_0 \in C \setminus \{z_3\}$.