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Definition

Fractional Linear Transformations

We now consider a particular class of conformal maps.

Definition

A rational function of the form

az+b
cz+d

f(z) =

with a, b,c,d € C and ad — bc # 0 is called a fractional linear
transformation (FLT) (or Mébius transformation).

Notice

, a(cz+d)—claz+b) ad—bc
Fz) = (cz + d)? " (cz+d)?’

so that FLTs are conformal where they are defined.
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Every linear function f(z) = az+ b is an FLT (with ¢ =0, d =1).
These include the dilations (z — az) and translations (z — z + b).

The inversion f(z) =1/zisan FLT (a=0,b=c=1,d =0).

If ¢ # 0, then polynomial long division gives

az+b a (ad—bc)/c

cz+d ¢ cz+d

Together with the ¢ = 0 case we find that:

Every FLT is a composition of dilations, translations and inversions.
- Daileda FLTS
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FLTs on C

FLTs and C

Every FLT f(z) = ZIZ extends naturally to a map C — C.

The two questions to address are:

© How do we define f(z) where cz+ d = 07?

@ How do we define f(00)?
In both cases we will simply take a limit.
Recall that z — oo in C provided |z| — oo in R.
The usual limit laws hold for limits to co. In particular,

. 1
lim — =0
z—o00 zN

for n € N.
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FLTs on C

c#0

Thus, if ¢ # 0, then

For an FLT f(z) = 2Z£2 (¢ # 0) we therefore define f(c0) = a/c.

cz+d
Since cz + d vanishes when z = —d/c, f(z) isn't defined there.
However,
lim aztbe 29 pobemad g
z——d/c C

It follows that gig can be made arbitrarily large as z — —d/c.

So we set f(—d/c) = Iin:l/ f(z) = oo.
z——d/c
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FLTs on C

If ¢ =0, then f(z) = az + b with a # 0 (WLOG), which is entire.

By the reverse triangle inequality

f(2)] =

alz) = 161 [alz] - ol
As z — oo, the RHS can be made arbitrarily large, i.e. f(z) — oo.
So for FLTs of the form f(z) = az + b we define

f(o0) = ILm az+ b = 0.

Note that in every case, we have extended our FLTs to be
continuous throughout C.
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Algebraic Structure

Inverses

Every FLT f(z) = az+b i the extended plane C is invertible.

cz+d
In fact, solving the equation z = iv”;is for w vyields
_dz—b
- —cz+a

One can check that the FLT g(z) = 422 satisfies g(f(z)) =

—cz+a
f(g(z)) = z at every extended value as well, e.g.

f(g(a/c)) = f(oo) = a/c
when ¢ # 0.

So every FLT is invertible on (E with inverse given by another FLT.
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Algebraic Structure

Composition

Because the identity function f(z) = z is an FLT, and function
composition is associative, we are one step away from showing the
FLTs make up a group.

It remains to check a composition of FLTs is another FLT.

Let f(2) = gis and g(z) = iiig be FLTs. Then

a(az+B)+b(yz+9d) (aa+ by)z+ (a + bd)

"8() = (az+ ) +d(rz+9) ~ (ca+dn)z+(ch+do)

This is an FLT since, as one can show
(acc+by)(cf+dd)—(ap+bd)(ca+dy) = (ad—bc)(ad—B) # 0.

The set of FLTs is therefore a group under function composition.
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Algebraic Structure

Group Structure

The set F of fractional linear transformations is a group under
composition of maps. F is generated by dilations, translations and
inversion.

There is another (perhaps now obvious) group theoretic
connection.

Given A= (25) € GLy(C), let Ta(z) = Z£-. Then Ta € F and

the computations of the preceding slide show that

TA (¢] TB = TAB-

That is, the map 7 : GLp(C) — F given by A+ T, is a homo-
morphism, obviously surjective.
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Algebraic Structure

Tx belongs to the kernel of 7 if and only if T4 is the identity
function z — z.

az+b
cz+d

This means Ta(z) = =z for all z, or

cz?+(d—a)z—b=0

for all z € C.

A nonzero polynomial has only finitely many roots, so this occurs
iff b=c=0and a=d,or A= (?,) = al, a scalar matrix.

So the kernel of 7 consists precisely of the scalar matrices:

e ()
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Algebraic Structure

The Projective General Linear Group

The first isomorphism theorem now yields:

The map A — T4 induces an isomorphism between the projective
general linear group PGLy(C) = GLy(C)/C* I and the group F of
fractional linear transformations of C.

Because elements in the same fiber differ by an element of the
kernel, we have the following immediate consequence.

Let A, B € GLp(C). Then Tp = Tg if and only if there is a
A € C* so that A= \B.

This completely answers the question of uniqueness of coefficients
in an FLT.
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Fixed Points

Fixed Points

Let f(z) = i_’jig be an FLT. A point zy € C is a fixed point of f

provided f(zy) = zp.

We will use fixed points to help us distinguish FLTs.

Since f(oc0) = a/c if ¢ # 0, we find that oo is a fixed point iff
c=0.

If zg € C, then f(zp) = zo if and only if cz3 + (d — a)zg — b = 0.

This has at most two solutions if ¢ # 0, and at most one if c =0,
unless a = d and b =0, in which case f is trivial.

Theorem 4

A nonidentity FLT has at most two fixed points in C.
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Fixed Points

SETES

The only fixed point of the FLT f(z) = z+ 1 is z = co. The same
is true of all translations.

Example 4

The fixed points of f(z) =2z are z = 0,00. The same is true of
all dilations.

Example 5
The fixed points of f(z) = Zt} are z =1+ /2.

Example 6
The only fixed point of f(z) = 322;11 isz=1
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Fixed Points

Values of FLTs

If two FLTs agree at three points in C, they are identical.

Proof. Let f,g € F. Suppose 71,273,235 € C are distinct and that
f(zj) = g(zj) for j=1,2,3.

Then zi, z> and z3 are fixed points of gL o f.

Thus g7 o f =1 and hence f = g. O

So an FLT is determined by its values at any three points. To what
extent can these be specified?

Let zy,2p,23 € C be distinct. There is a unique FLT carrying
71,270,273 to 0,1, 00, respectively.
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Proof. Uniqueness is guaranteed by the theorem. To establish
existence, simply take

Z— 212 — 23

f(z) = .
(Z) Z— 232 — 71

Remark. If one of z1,z> or z3 is 0o, simply take the appropriate
limit in (1).

For example, holding z, z» and z3 fixed, we find that

I Z—2Z122 — 23 Z2 — 23
im =
21007 — 2320 — 21 Z—23

which carries 0o, zp, z3 to 0, 1, cc.
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The Cross-Ratio

The Cross-Ratio

If 29,21, 22,23 € C are distinct, their cross-ratio is

Zy) — 21 22 — Z3

[20721722)23] = )
20— 232224

which is the image of zy under the FLT carrying z;, 25, z3 to
0,1, c0.

v

We can use the cross-ratio to give a simple proof of the next result.

Theorem 6

Let z1,zp, z3, W1, Wo, W3 € C. If the z; are pairwise distinct and the
w; are pairwise distinct, then there exists a unique f € F so that
f(zj)) =w, for j=1,2,3.
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The Cross-Ratio

Invariance

Proof. Let g(z) = [z, z1, 22, z3] and h(w) = [w, wy, wa, ws].

Then f = h™! o g works, and is necessarily unique by Theorem
7. O

One consequence of Theorem 8 is the invariance of the cross-ratio
under FLTs.

Let zy,z1,20,23 € C be distinct. For any f € F,

[f(Zo), f(Zl), f(ZQ), f(Z3)] = [Zl, Z2,23, Z4].

Proof. Let g(z) = [z,z1,22,23] and h(w) = [w, f(z1), f(z2), f(23)].

Then h™! o g maps z; — f(z;) for j =1,2,3.
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By Theorem 7, this implies h"log=f or g =hof.
Thus
[f(20), f(21), f(22), (23)] = h(f(20)) = &(20) = [20, 21, 22, z3].
O

Preservation of the cross-ratio is related to the following important
geometric property of FLTs.

Theorem 8

A fractional linear transformation f : C — C carries circles to
circles.

Remark. A circle in C is a circle or line (circle through oo) in C.
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Geometry

By Theorem 1 it suffices to assume f is a translation, dilation or
inversion. The result is clear if f is a translation or dilation.

So assume f(z) = 1/z. Recall the stereographic projection
7:C— S

Let R denote rotation rotation about the X-axis in R3 by 180°.

According to exercise 1.3.4, R corresponds to the inversion map
z+ 1/z on C. That is,

1

R=roforn ! & f=n'oRom.

But 7 and R map circles to circles, so we're finished. ]
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Geometry

Application

Three distinct points z3, 25,23 € C uniquely determine a circle C.

If f(z) is an FLT, f(C) is a circle containing the distinct points
f(z1), f(z2), f(z3). There is only one such circle.

Moral. To compute the image of a circle under an FLT, one need
only compute the image of any three of its points.

Show that f(z) = :;__i maps the real axis to the unit circle, the

unit circle to the imaginary axis, and the imaginary axis to the real
axis.
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Geometry

Solution

One easily checks that under 7:
—i—0, i—oo, co—1 0—~—-1 11

0, 1 and oo are on the real axis and map to —1, i, 1 on the unit
circle. Thus R — St.

1, i, —i on the unit circle map to i, oo, 0 on the imaginary axis.
Hence St — iR.

—1i, 0 and i/ on the imaginary axis map to 0, —1, co on the real
axis. So iR — R. O
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Geometry

Regions

Let f(z) be an FLT, C be a circle in C, and C' = £(C).

C divides C into two connected components, ; and Q (the
“inside” and “outside” of C).

Likewise, C’ divides C into €} and Q).

Topological considerations imply that, after possibly relabeling,
f(Q) = Q}, j=1,2.

Conformality implies f preserves the relative orientation of these
“sides” to C.
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Example 8

Show that f(z) = :;__i maps the upper half-plane

H = {z| Imz > 0} to the complement D¢ of the closed unit disk.

Solution. We have seen that f maps 0, 1, co on the real axis to
—1, i, 1 on the unit circle.

So f must map H to either the “inside” or the “outside” of the

unit circle.
As we move along R from 0 to 1 to co, H is on the left.

So as we move on the unit circle from —1 to i to 1, the image of
H must also be on the left, or “outside” the unit circle.

Hence f maps H to D°€. O
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Geometry

Another Application

Finally, we can interpret the cross-ratio.

Theorem 9

Let zy,z1, 2,23 € C be distinct. The cross-ratio [z, z1, 22, 23] is
real if and only if zy, z1, 20, z3 lie on the same circle.

Proof. Let C be the circle through z, z3, z3 and f(z2) = [z, z1, 22, z3].
Then f € F carries

Z1,22,23 — 071700
on C on R.

Hence f(C) = R.

So f(z0) € R if and only if zp € C \ {z3}. O
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