
Introduction Convergence Differentiability Hadamard’s Formula

Power Series

Ryan C. Daileda

Trinity University

Complex Variables

Daileda Power Series



Introduction Convergence Differentiability Hadamard’s Formula

Introduction

Definition

A power series (PS) centered at z0 ∈ C is an expression of the form

∞
∑

k=0

ak(z − z0)
k , ak ∈ C. (1)

The terms in the sequence {ak} are called the coefficients of (1).

Remarks.

1 PS can be viewed as infinite-degree generalizations of
polynomials, and share many (though not all!) of their
properties.

2 We can always viewed as a PS as centered at z0 = 0 via the
simple substitution w = z − z0.

Daileda Power Series



Introduction Convergence Differentiability Hadamard’s Formula

Example 1

The geometric series
∑

zk is a power series centered at z0 = 0. It
converges (normally) for |z | < 1, and diverges otherwise.

We will see that all power series share similar convergence
properties.

We begin with a fundamental lemma.

Lemma 1

If the PS
∑

akz
k converges at a nonzero point z0, then it

converges absolutely and normally on |z | < |z0|.

Proof. Let R = |z0| and choose 0 < r < R .

Because
∑

akz
k

0 converges, akz
k

0 → 0.
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In particular,
∣

∣akz
k
0

∣

∣ = |ak |Rk < 1 for all k ≥ K .

If |z | ≤ r < R , then for k ≥ K we have

∣

∣

∣
akz

k

∣

∣

∣
= |ak | · |z |k ≤ |ak |rk = |ak |Rk

( r

R

)k

<
( r

R

)k

.

Thus,
∑ |akzk | is (eventually) dominated by the convergent

geometric series
∑

(r/R)k .

By the M-test, the series
∑

akz
k converges absolutely and

uniformly for |z | ≤ r .
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Corollary 1

If the PS
∑

akz
k diverges at a nonzero point z0, then it diverges

for all |z | > |z0|.

Proof. Suppose, instead, that
∑

akz
k converges for some

|z | > |z0|.
It then converges at z0 by the Lemma, contradicting our
hypothesis.

Definition

Let
∑

akz
k be a power series and set

R = sup
{

|z | :
∑

akz
k converges

}

,

the radius of convergence of
∑

akz
k .

Remark. It is possible to have R = 0 or R = ∞.

Daileda Power Series



Introduction Convergence Differentiability Hadamard’s Formula

Convergence of Power Series

Theorem 1

The radius of convergence R of a PS
∑

akz
k is uniquely defined

by the following properties:

1.
∑

akz
k converges absolutely and normally for |z | < R;

2.
∑

akz
k diverges for |z | > R.

Proof. By definition,
∑

akz
k diverges for |z | > R , so 2 holds.

As for 1, let 0 < r < R .

Because R is the supremum, there is a |z0| ≤ R so that r < |z0|
and

∑

akz
k
0 converges.

For |z | ≤ r , the conclusion follows from the fundamental Lemma.

(Uniqueness is an easy exercise.)
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Examples

Example 2

Determine the radius of convergence of

∞
∑

k=1

zk

k2k
.

Solution. We appeal to the root test for absolute convergence:

L = lim
k→∞

k

√

∣

∣

∣

∣

zk

k2k

∣

∣

∣

∣

= lim
k→∞

|z |
2 k
√
k
=

|z |
2

The series converges absolutely when L < 1 and diverges if L > 1.

It follows that the radius of convergence is R = 2 .
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Example 3

Find the radius of convergence of the exponential series

∞
∑

k=0

zk

k!
.

Solution. We use the ratio test for absolute convergence:

L = lim
k→∞

∣

∣

∣

∣

zk+1

(k + 1)!

/

zk

k!

∣

∣

∣

∣

= lim
k→∞

|z |
k + 1

= 0

for all z ∈ C.

Because L < 1, the ratio test implies the series converges
absolutely for all z ∈ C.

Thus the radius of convergence is R = ∞ .
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Differentiability of Power Series

Theorem 2

Let
∑

akz
k be a power series with positive radius of convergence

R. The function

f (z) =

∞
∑

k=0

akz
k

is analytic on |z | < R and can be differentiated term-by-term,

infinitely often:

f (m)(z) =
dm

dzm

∞
∑

k=0

akz
k =

∞
∑

k=0

dm

dzm
akz

k =
∞
∑

k=m

k!

(k −m)!
akz

k−m,

with absolute and normal convergence for |z | < R.
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Proof

The terms in a power series are entire functions, and power series
converge normally inside their radii of convergence.

The result is an immediate consequence of the theorem on normal
convergence of analytic functions and its corollaries.

Remarks.

1 Theorem 2 becomes a result on all power series after the
change of variable z → z − z0.

2 According to Theorem 2, deriving a PS cannot decrease its
radius of convergence. Could it possibly increase?

3 We know that analytic functions on disks have analytic
antiderivatives. Might we be able to integrate term-by-term as
well?
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Hadamard’s Formula

It turns out that there is a simple formula for the radius of
convergence that will answer these questions.

Theorem 3 (Hadamard’s Formula)

The radius of convergence of the power series
∑

akz
k is given by

(

lim sup
k→∞

k
√

|ak |
)−1

.

Proof. Let L = lim sup k

√

|ak | < ∞.

Suppose that 0 < |z | < 1/L.
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Choose L < R < 1/|z |. Note that |Rz | < 1.

Then there is a K so that supk≥K
k

√

|ak | < R .

In particular, k

√

|ak | < R for k ≥ K . Hence

∣

∣

∣
akz

k

∣

∣

∣
< |Rz |k for k ≥ K ,

and
∑

∣

∣akz
k
∣

∣ is eventually dominated by the convergent geometric
series

∑ |Rz |k .

Thus,
∑

akz
k converges when |z | < 1/L.
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On the other hand, suppose |z | > 1/L, so that 1/|z | < L.

We know that L ≤ supk≥K
k

√

|ak | for all K , by definition.

So for each K we can choose nK ≥ K so that 1/|z | < n
K

√

|anK |.

This means we can find arbitrarily large values of k for which
1/|z | < k

√

|ak |.

That is, |akzk | > 1 infinitely often, so that akz
k 6→ 0, and

∑

akz
k

diverges.
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Examples

Example 4

Show that
∑

akz
k and its derived series

∑

kakz
k−1 have the same

radius of convergence.

Solution. We begin by writing

∞
∑

k=0

kakz
k−1 =

1

z

∞
∑

k=0

kakz
k ,

and note that both series converge for the same values of z .
We apply Hadamard in the second:

lim sup
k→∞

k
√

|kak | = lim sup
k→∞

k
√

|ak |

because lim k
√
k = 1.
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It follows that the original series and the derived series have the
same value of R (the reciprocal of the common lim sup).

Example 5

Show that
∑

akz
k and the integrated series

∑

ak

k+1z
k+1 have the

same radius of convergence.

Solution. The solution is nearly identical, except that we use the
fact that

lim sup
k→∞

k
√

|ak/(k + 1)| = lim sup
k→∞

k
√

|ak |,

since limk→∞
k
√
k + 1 = 1.
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Towers of Power Series

Suppose f (z) =
∑

akz
k has positive radius of convergence R .

Inductively applying Example 4 in Theorem 2, we find that f (z) is
analytic for |z | < R , all of its derivatives are given by formal
differentiation of PS, and all have radius of convergence R as well.

By Example 5, F (z) =
∑

ak

k+1z
k+1 is also analytic, with radius R .

By Theorem 2, F ′(z) = f (z).

Again by induction, we can formally antidifferentiate f (z) arbtrarily
often to obtain repeated PS antiderivatives of f (z), all with radius
R .
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This yields a tower of power series, all with common radius of
convergence R :

· · · −→
d/dx

f (−2) −→
d/dx

f (−1) −→
d/dx

f −→
d/dx

f ′ −→
d/dx

f ′′ −→
d/dx

· · ·

Each term is obtained by formally differentiating or integrating the
adjacent terms.

Example 6

Find a power series representation for Arctan z centered at z0 = 0.

Solution. We know that

d

dz
Arctan z =

1

1 + z2
=

∞
∑

k=0

(−1)kz2k

for |z2| < 1 ⇐⇒ |z | < 1.
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It follows that

Arctan z =

∫ ∞
∑

k=0

(−1)kz2k dz =
∞
∑

k=0

(−1)k

2k + 1
z2k+1 + C ,

for |z | < 1. Setting z = 0 we find that C = 0, so that

Arctan z =
∞
∑

k=0

(−1)k

2k + 1
z2k+1 for |z | < 1 .
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