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Recall

Last time we proved:

Theorem 1 (Local Cauchy Integral Formula)

Suppose f (z) is analytic on an open disk D. If γ is a simple loop

in D and z0 is inside γ, then

f (z0) =
1

2πi

∫

γ

f (z)

z − z0
dz .

We can use the local Cauchy integral formula to obtain some very
interesting global results.
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Differentiation

Let Ω ⊂ C be a domain and suppose f : Ω → C is analytic.

Let z0 ∈ Ω and choose r0 > 0 so that the disk D = {|z − z0| < r0}
is contained in Ω.

Fix an r with 0 < r < r0. The circle Cr = {|z − z0| = r} is
contained in D, and Cauchy’s integral formula tells us

f (w) =
1

2πi

∫

Cr

f (z)

z − w
dz for |w − z0| < r .

Assuming we can differentiate under the integral sign, we find that

f ′(w) =
1

2πi

∫

Cr

f (z)

(z − w)2
dz for |w − z0| < r .

Can we justify this operation?
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Fundamental Lemma

Let γ be a piecewise C 1 path in C and suppose g(z) is continuous
on γ. Let n ∈ N.

For w ∈ C \ γ define

F (w) =

∫

γ

g(z)

(z − w)n
dz .

Lemma 1

The function F (w) is analytic on C \ γ, with

F ′(w) =
d

dw

∫

γ

g(z)

(z − w)n
dz =

∫

γ

∂

∂w

g(z)

(z − w)n
dz

= n

∫

γ

g(z)

(z − w)n+1
dz .
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Applied to

f (w) =
1

2πi

∫

Cr

f (z)

z − w
dz for |w − z0| < r ,

Lemma 1 immediately yields

f ′(w) =
1

2πi

∫

Cr

f (z)

(z − w)2
dz for |w − z0| < r . (1)

But Lemma 1 also applies to the RHS of (1). Thus f ′ is analytic
on |w − z0| < r , and

f ′′(w) =
2

2πi

∫

Cr

f (z)

(z − w)3
dz for |w − z0| < r .
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Analytic Implies C 1

Since z0 ∈ Ω was arbitrary, we come to the following conclusion.

Theorem 2

Let Ω ⊂ C be a domain and let f : Ω → C be analytic. Then f ′ is

analytic on Ω.

We can now deduce a result we’ve been alluding to all semester.

Corollary 1

If f is analytic on a domain Ω, then f ∈ C 1(Ω).

Proof. Since f ′ is analytic on Ω, it is continuous.

Remark. This means that the C 1 version of Cauchy’s theorem is
valid for all analytic functions!

Daileda Consequences



Derivatives Cauchy’s Estimates General Integral Formula

Analytic Implies C∞

Theorem 2 tells us that if f is analytic on Ω, then so is f ′.

We may therefore apply Theorem 2 to f ′ to conclude that f ′′ is
analytic on Ω.

We can continue in this manner indefinitely, arriving at the
following conclusion.

Corollary 2

If f is analytic on a domain Ω, then f is infinitely differentiable on

Ω.

Remark. Strictly speaking, this should be proven using Theorem 2
and induction.
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Proof of Lemma 1

Let’s return to the proof of Lemma 1.

We assume n = 1 for convenience.

The general case is similar, but is more algebraically involved.

Fix z0 ∈ C \ γ.

To compute F ′(z0) we first we look at the difference quotient:

F (w)− F (z0)

w − z0
=

1

w − z0

∫

γ

g(z)

(

1

z − w
−

1

z − z0

)

dz

=

∫

γ

g(z)

(z − w)(z − z0)
dz .
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We now compare the difference quotient to the purported
derivative:

F (w)− F (z0)

w − z0
−

∫

γ

g(z)

(z − z0)2
dz

=

∫

γ

g(z)

(z − w)(z − z0)
dz −

∫

γ

g(z)

(z − z0)2
dz

=

∫

γ

g(z)

(

1

(z − w)(z − z0)
−

1

(z − z0)2

)

dz

= (w − z0)

∫

γ

g(z)

(z − w)(z − z0)2
dz .
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Let R = min{|z − z0| : z ∈ γ} > 0. Then |z − z0| ≥ R for all
z ∈ γ.

If |z0 − w | < R/2, then for any z ∈ γ

|z − w | = |z − z0 + z0 − w | ≥ |z − z0| − |z0 − w | ≥ R −
R

2
=

R

2
.

We therefore have
∣

∣

∣

∣

1

(z − w)(z − z0)2

∣

∣

∣

∣

≤
1

(R/2)R2
=

2

R3
.

Let M denote the maximum value of g(z) on γ, and L(γ) the arc
length of γ.
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Putting everything together we find that

∣

∣

∣

∣

F (w)− F (z0)

w − z0
−

∫

γ

g(z)

(z − z0)2
dz

∣

∣

∣

∣

= |w − z0| ·

∣

∣

∣

∣

∫

γ

g(z)

(z − w)(z − z0)2
dz

∣

∣

∣

∣

≤ |w − z0|
2M L(γ)

R3

for |w − z0| < R/2.

As w → z0, the RHS can be made arbitrarily small. Thus

F ′(z0) = lim
w→z0

F (w)− F (z0)

w − z0
=

∫

γ

g(z)

(z − z0)2
dz .
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Cauchy’s Estimates

Returning to the local situation, recall that if f is analytic on
|z − z0| < r0 and 0 < r < r0, then

f (w) =
1

2πi

∫

Cr

f (z)

z − w
dz for |z0 − w | < r ,

where Cr = {|z − z0| = r}.

Repeated (inductive) application of Lemma 1 (differentiation under
the integral) leads to the formulae

f (k)(w) =
k!

2πi

∫

Cr

f (z)

(z − w)k+1
dz for |z0 − w | < r ,

for k ∈ N0.
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Suppose that |f (z)| ≤ M for |z − z0| = r . Then for any k ∈ N0,

∣

∣

∣
f (k)(z0)

∣

∣

∣
=

∣

∣

∣

∣

k!

2πi

∫

Cr

f (z)

(z − z0)k+1
dz

∣

∣

∣

∣

≤
k!

2π

M

rk+1
2πr =

k!

rk
M.

These are Cauchy’s estimates.

Theorem 3 (Cauchy’s Estimates)

Suppose f is analytic on |z − z0| < r0 and 0 < r < r0. If

|f (z)| ≤ M for |z − z0| = r , then

∣

∣

∣
f (k)(z0)

∣

∣

∣
≤

k!

rk
M,

for all k ∈ N0.
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Liouville’s Theorem

Now suppose f is entire and that |f (z)| ≤ M0 for all z ∈ C (f is
bounded).

For any r > 0 and z0 ∈ C, f is analytic on |z − z0| < r + 1.

We may therefore take r0 = r + 1 and apply Cauchy’s estimates
with M = M0.

When k = 1, this yields

∣

∣f ′(z0)
∣

∣ ≤
M0

r

for all r > 0.

Letting r → ∞, we conclude that f ′(z0) = 0.
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Since z0 ∈ C was arbitrary, this means f ′ ≡ 0.

Hence, f is constant! We have proven the following result.

Theorem 4 (Liouville’s Theorem)

A bounded entire function is constant.

Remark. Theorem 4 is actually due to Cauchy as well, and was
misattributed to Liouville by Borchardt.

Example 1

Suppose f is entire and Re f (z) ≤ M for all z ∈ C. Show that f is
constant.
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Solution. Let g(z) = ef (z).

Then g is also entire and |g(z)| = eRe f (z) ≤ eM .

By Liouville’s theorem, g ≡ C for some C ∈ C.

So the image of f must be among the (discrete) values of logC ,
which are given by wn = Log C + 2nπi , n ∈ Z.

Since f is continuous and C is connected, f (C) is also connected.

It follows that f (C) = {wm} for some m ∈ Z. That is, f is
constant.
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Cauchy’s Integral Formula (Again)

Finally, we prove the (global) Cauchy integral formula.

Theorem 5 (Cauchy’s Integral Formula)

Let Ω ⊂ C be a domain and let f : Ω → C be analytic. If γ is a

simple loop in Ω and z0 is inside γ, then

f (z0) =
1

2πi

∫

γ

f (z)

z − z0
dz .

Proof. Choose r0 > 0 so that the disk |z − z0| < r0 is inside γ.

Then choose r so that 0 < r < r0 and let Cr denote the circle
|z − z0| = r .
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According to the local Cauchy integral formula,

f (z0) =
1

2πi

∫

Cr

f (z)

z − z0
dz .

Let Ω′ denote the region between Cr and γ. Then ∂Ω′ = γ − Cr .

Because f (z)/(z − z0) is analytic on Ω′, Cauchy’s theorem implies

0 =

∫

∂Ω′

f (z)

z − z0
dz =

∫

γ

f (z)

z − z0
dz −

∫

Cr

f (z)

z − z0
dz

=

∫

γ

f (z)

z − z0
dz − 2πi f (z0),

and the integral formula follows.
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Cauchy’s Integral Formula for Derivatives

Application of Lemma 1 to Cauchy’s integral formula yields:

Corollary 3

With Ω, γ and z0 as above, for any k ∈ N,

f (k)(z0) =
k!

2πi

∫

γ

f (z)

(z − z0)k+1
dz .

Cauchy’s integral formula can be used “in reverse” to evaluate
integrals.

Example 2

Evaluate the integral

∫

γ

cos z

z3
dz , where γ is any simple loop

enclosing z = 0.
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Solution. We apply Cauchy’s integral formula for derivatives with
f (z) = cos z , z0 = 0 and k = 2.

This yields
d2

dz2
cos z

∣

∣

∣

∣

z=0

=
2

2πi

∫

γ

cos z

z3
dz .

Since d
2

dz2
cos z = − cos z and cos 0 = 1, we conclude that

∫

γ

cos z

z3
dz = −iπ.
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