Cauchy's Integral Formula

Ryan C. Daileda

Trinity University

Complex Variables

Recall

We've have proven:

Theorem 1 (Cauchy's Theorem for a Disk) Let $z_0 \in \mathbb{C}$ and r > 0. Suppose f(z) is analytic on the disk $D = \{z : |z - z_0| < r\}$. Then: 1. f has an antiderivative in D; 2. $\int_{\gamma} f(z) dz = 0$ for any loop γ in D.

Essential to the proof was the following result.

Theorem 2 (Cauchy's Theorem for Rectangles)

Let $\Omega \subset \mathbb{C}$ be a domain and let $f : \Omega \to \mathbb{C}$ be analytic. If R is a closed rectangular region in Ω , then $\int_{\partial R} f(z) dz = 0$.

Strengthened Cauchy's Theorem for a Disk

For our purposes, we will require the following slightly stronger version of Cauchy's theorem for a disk.

Theorem 3 (Strong Cauchy's Theorem for a Disk)

Let $z_0 \in \mathbb{C}$ and r > 0. Suppose f(z) is continuous on the disk $D = \{z : |z - z_0| < r\}$ and analytic on $D \setminus \{z_1\}$, for some $z_1 \in D$. Then:

1. f has an antiderivative in D;
2.
$$\int_{\gamma} f(z) dz = 0$$
 for any loop γ in D

The strong version of Cauchy's theorem follows from an appropriate strengthening of Cauchy's theorem for rectangles.

Theorem 4 (Strong Cauchy's Theorem for Rectangles)

Let $\Omega \subset \mathbb{C}$ be a domain and let $z_0 \in \Omega$. Suppose $f : \Omega \to \mathbb{C}$ is continuous on Ω and analytic on $\Omega \setminus \{z_0\}$. If R is a closed rectangular region in Ω , then $\int_{\partial R} f(z) dz = 0$.

Theorem 4 is an immediate consequence of two lemmas.

Lemma 1

Let $\Omega \subset \mathbb{C}$ be a domain and let $z_0 \in \Omega$. Suppose $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ is analytic and satisfies $\lim_{z\to z_0} (z-z_0)f(z) = 0$. If R is any closed rectangular region in Ω and $z_0 \notin \partial R$, then $\int_{\partial R} f(z) dz = 0$.

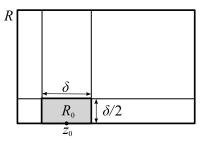
Remark. The condition $\lim_{z\to z_0}(z-z_0)f(z) = 0$ is satisfied, e.g., if f is continuous at z_0 .

Lemma 2

Let $\Omega \subset \mathbb{C}$ be a domain and let $z_0 \in \Omega$. Suppose $f : \Omega \to \mathbb{C}$ is continuous on Ω and analytic on $\Omega \setminus \{z_0\}$. If R is a closed rectangular region in Ω and $z_0 \in \partial R$, then $\int_{\partial R} f(z) dz = 0$.

Proof of Lemma 1: HW.

Proof of Lemma 2: Subdivide R into subrectangles as shown:



Then

$$\int_{\partial R} f(z) dz = \sum_{R'} \int_{\partial R'} f(z) dz, \qquad (1)$$

where R' runs over all of the subrectangles.

If R' is a white subrectangle, then f is analytic on R', and the original rectangular Cauchy's theorem implies $\int_{\partial R'} f(z) dz = 0$.

Thus (1) becomes

$$\int_{\partial R} f(z) \, dz = \int_{\partial R_0} f(z) \, dz.$$

We will show that we can make the RHS arbitrarily small by choosing δ appropriately.

Use continuity to choose $\delta_0>0$ so that $|f(z)-f(z_0)|<1$ whenever $|z-z_0|<\delta_0.$

Let $0 < \delta < \delta_0$.

Then for $|z - z_0| < \delta$ we have

$$|f(z)| = |f(z) - f(z_0) + f(z_0)| \le 1 + |f(z_0)|.$$

Since ∂R_0 is contained in $|z - z_0| < \delta$, an ML estimate then gives

$$\left|\int_{\partial R} f(z) dz\right| = \left|\int_{\partial R_0} f(z) dz\right| \leq 3\delta(1+|f(z_0)|).$$

As $0 < \delta < \delta_0$ was arbitrary, this implies that $\int_{\partial R} f(z) dz = 0$. \Box

As noted, the strong Cauchy theorem for rectangles follows at once from Lemmas 1 and 2 (the exceptional point z_0 either lies on ∂R or it doesn't).

The strong Cauchy theorem for a disk follows by substituting the strong Cauchy theorem for rectangles in the proof of the "weak" Cauchy theorem for a disk.

We will eventually use the strong Cauchy theorem on a disk to prove the *Cauchy integral formula*.

Winding Numbers

Definition

Let $z_0 \in \mathbb{C}$ and suppose γ is any loop that avoids z_0 . The *index* (or *winding number*) of γ with respect to z_0 is

$$I(\gamma;z_0)=\frac{1}{2\pi i}\int_{\gamma}\frac{dz}{z-z_0}.$$

Lemma 3

Let $z_0 \in \mathbb{C}$ and let γ be a loop avoiding z_0 . Then $I(\gamma, z_0) \in \mathbb{Z}$.

Proof. Suppose $\gamma: [a, b] \to \mathbb{C}$ is piecewise C^1 , so that

$$I(\gamma; z_0) = \frac{1}{2\pi i} \int_a^b \frac{\gamma'(\tau)}{\gamma(\tau) - z_0} \, d\tau.$$

Let

$$g(t) = \int_a^t \frac{\gamma'(\tau)}{\gamma(\tau) - z_0} \, d\tau.$$

FTOC implies

$$g'(t) = rac{\gamma'(t)}{\gamma(t) - z_0}$$

on the intervals where $\gamma'(t)$ is continuous. We then we have

$$\begin{aligned} \frac{d}{dt} e^{-g(t)}(\gamma(t) - z_0) &= -g'(t)e^{-g(t)}(\gamma(t) - z_0) + e^{-g(t)}\gamma'(t) \\ &= e^{-g(t)} \left(-g'(t)(\gamma(t) - z_0) + \gamma'(t) \right) \\ &= e^{-g(t)} \left(-\gamma'(t) + \gamma'(t) \right) \\ &= 0, \end{aligned}$$

which means $e^{-g(t)}(\gamma(t) - z_0)$ is *piecewise* constant.

П

But
$$e^{-g(t)}(\gamma(t) - z_0)$$
 is continuous, so $e^{-g(t)}(\gamma(t) - z_0) = C$.

Since g(a) = 0 we find that $C = e^0(\gamma(a) - z_0) = \gamma(a) - z_0$. Thus

$$e^{-g(t)}(\gamma(t) - z_0) = \gamma(a) - z_0.$$
 (2)

Since $\gamma(b) = \gamma(a)$ and $g(b) = 2\pi i \cdot I(\gamma; z_0)$, setting t = b in (2) yields

$$e^{-2\pi i \cdot I(\gamma;z_0)}(\gamma(a)-z_0)=\gamma(a)-z_0 \ \Rightarrow \ e^{2\pi i \cdot I(\gamma;z_0)}=1,$$

since $\gamma(a) \neq z_0$. This implies that

$$2\pi i \cdot I(\gamma; z_0) \equiv 0 \pmod{2\pi i} \iff I(\gamma; z_0) \equiv 0 \pmod{1}$$

 $\iff I(\gamma; z_0) \in \mathbb{Z}.$

The index $I(\gamma; z_0)$ measures how many times γ "wraps around" z_0 .

Example 1

Show that if γ is a positively oriented simple loop avoiding $\mathbf{z}_{0},$ then

$$I(\gamma; z_0) = \begin{cases} 1, & ext{if } z_0 ext{ is inside } \gamma, \\ 0, & ext{otherwise.} \end{cases}$$

Solution. Since $\frac{d}{dz} \frac{1}{z-z_0} = \frac{-1}{(z-z_0)^2}$ is continuous away from z_0 , we may apply the C^1 version of Cauchy's theorem.

If z_0 is outside γ , then $\frac{1}{z-z_0}$ is analytic on and inside γ . Thus

$$I(\gamma;z_0)=\frac{1}{2\pi i}\int_{\gamma}\frac{dz}{z-z_0}=0,$$

by Cauchy's theorem.

If z_0 is inside γ , we can choose an r > 0 so that $C_r = \{|z - z_0| = r\}$ is also inside γ .

 $\frac{1}{z-z_0}$ is analytic between γ and $|z - z_0| = r$, so we may apply Cauchy's theorem:

(picture)

This yields

$$0 = \int_{\gamma} \frac{dz}{z - z_0} + \int_{-C_r} \frac{dz}{z - z_0} = \int_{\gamma} \frac{dz}{z - z_0} - 2\pi i_r$$

by an earlier example. The result follows.