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Recall

We’ve have proven:

Theorem 1 (Cauchy’s Theorem for a Disk)

Let z0 ∈ C and r > 0. Suppose f (z) is analytic on the disk

D = {z : |z − z0| < r}. Then:

1. f has an antiderivative in D;

2.

∫

γ

f (z) dz = 0 for any loop γ in D.

Essential to the proof was the following result.

Theorem 2 (Cauchy’s Theorem for Rectangles)

Let Ω ⊂ C be a domain and let f : Ω → C be analytic. If R is a

closed rectangular region in Ω, then
∫

∂R
f (z) dz = 0.
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Strengthened Cauchy’s Theorem for a Disk

For our purposes, we will require the following slightly stronger
version of Cauchy’s theorem for a disk.

Theorem 3 (Strong Cauchy’s Theorem for a Disk)

Let z0 ∈ C and r > 0. Suppose f (z) is continuous on the disk

D = {z : |z − z0| < r} and analytic on D \ {z1}, for some z1 ∈ D.

Then:

1. f has an antiderivative in D;

2.

∫

γ

f (z) dz = 0 for any loop γ in D.

The strong version of Cauchy’s theorem follows from an
appropriate strengthening of Cauchy’s theorem for rectangles.
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Theorem 4 (Strong Cauchy’s Theorem for Rectangles)

Let Ω ⊂ C be a domain and let z0 ∈ Ω. Suppose f : Ω → C is

continuous on Ω and analytic on Ω \ {z0}. If R is a closed

rectangular region in Ω, then
∫

∂R
f (z) dz = 0.

Theorem 4 is an immediate consequence of two lemmas.

Lemma 1

Let Ω ⊂ C be a domain and let z0 ∈ Ω. Suppose f : Ω \ {z0} → C

is analytic and satisfies limz→z0(z − z0)f (z) = 0. If R is any closed

rectangular region in Ω and z0 6∈ ∂R, then
∫

∂R
f (z) dz = 0.

Remark. The condition limz→z0(z − z0)f (z) = 0 is satisfied, e.g.,
if f is continuous at z0.
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Lemma 2

Let Ω ⊂ C be a domain and let z0 ∈ Ω. Suppose f : Ω → C is

continuous on Ω and analytic on Ω \ {z0}. If R is a closed

rectangular region in Ω and z0 ∈ ∂R, then
∫

∂R
f (z) dz = 0.

Proof of Lemma 1: HW.

Proof of Lemma 2: Subdivide R into subrectangles as shown:

z0

�/2

�

R
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Then
∫

∂R

f (z) dz =
∑

R′

∫

∂R′

f (z) dz , (1)

where R ′ runs over all of the subrectangles.

If R ′ is a white subrectangle, then f is analytic on R ′, and the
original rectangular Cauchy’s theorem implies

∫

∂R′ f (z) dz = 0.

Thus (1) becomes

∫

∂R

f (z) dz =

∫

∂R0

f (z) dz .

We will show that we can make the RHS arbitrarily small by
choosing δ appropriately.
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Use continuity to choose δ0 > 0 so that |f (z)− f (z0)| < 1
whenever |z − z0| < δ0.

Let 0 < δ < δ0.

Then for |z − z0| < δ we have

|f (z)| = |f (z)− f (z0) + f (z0)| ≤ 1 + |f (z0)|.

Since ∂R0 is contained in |z − z0| < δ, an ML estimate then gives

∣

∣

∣

∣

∫

∂R

f (z) dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂R0

f (z) dz

∣

∣

∣

∣

≤ 3δ(1 + |f (z0)|).

As 0 < δ < δ0 was arbitrary, this implies that
∫

∂R
f (z) dz = 0.
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As noted, the strong Cauchy theorem for rectangles follows at once
from Lemmas 1 and 2 (the exceptional point z0 either lies on ∂R

or it doesn’t).

The strong Cauchy theorem for a disk follows by substituting the
strong Cauchy theorem for rectangles in the proof of the “weak”
Cauchy theorem for a disk.

We will eventually use the strong Cauchy theorem on a disk to
prove the Cauchy integral formula.
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Winding Numbers

Definition

Let z0 ∈ C and suppose γ is any loop that avoids z0. The index

(or winding number) of γ with respect to z0 is

I (γ; z0) =
1

2πi

∫

γ

dz

z − z0
.

Lemma 3

Let z0 ∈ C and let γ be a loop avoiding z0. Then I (γ, z0) ∈ Z.

Proof. Suppose γ : [a, b] → C is piecewise C 1, so that

I (γ; z0) =
1

2πi

∫ b

a

γ′(τ)

γ(τ)− z0
dτ.
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Let

g(t) =

∫ t

a

γ′(τ)

γ(τ)− z0
dτ.

FTOC implies

g ′(t) =
γ′(t)

γ(t)− z0

on the intervals where γ′(t) is continuous. We then we have

d

dt
e−g(t)(γ(t)− z0) = − g ′(t)e−g(t)(γ(t)− z0) + e−g(t)γ′(t)

= e−g(t)
(

−g ′(t)(γ(t)− z0) + γ′(t)
)

= e−g(t)
(

−γ′(t) + γ′(t)
)

= 0,

which means e−g(t)(γ(t)− z0) is piecewise constant.
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But e−g(t)(γ(t)− z0) is continuous, so e−g(t)(γ(t)− z0) = C .

Since g(a) = 0 we find that C = e0(γ(a)− z0) = γ(a)− z0. Thus

e−g(t)(γ(t)− z0) = γ(a)− z0. (2)

Since γ(b) = γ(a) and g(b) = 2πi · I (γ; z0), setting t = b in (2)
yields

e−2πi ·I (γ;z0)(γ(a)− z0) = γ(a)− z0 ⇒ e2πi ·I (γ;z0) = 1,

since γ(a) 6= z0. This implies that

2πi · I (γ; z0) ≡ 0 (mod 2πi) ⇐⇒ I (γ; z0) ≡ 0 (mod 1)

⇐⇒ I (γ; z0) ∈ Z.
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The index I (γ; z0) measures how many times γ “wraps around” z0.

Example 1

Show that if γ is a positively oriented simple loop avoiding z0, then

I (γ; z0) =

{

1, if z0 is inside γ,

0, otherwise.

Solution. Since d
dz

1
z−z0

= −1
(z−z0)2

is continuous away from z0, we

may apply the C 1 version of Cauchy’s theorem.

If z0 is outside γ, then 1
z−z0

is analytic on and inside γ. Thus

I (γ; z0) =
1

2πi

∫

γ

dz

z − z0
= 0,

by Cauchy’s theorem.
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If z0 is inside γ, we can choose an r > 0 so that
Cr = {|z − z0| = r} is also inside γ.

1
z−z0

is analytic between γ and |z − z0| = r , so we may apply
Cauchy’s theorem:

(picture)

This yields

0 =

∫

γ

dz

z − z0
+

∫

−Cr

dz

z − z0
=

∫

γ

dz

z − z0
− 2πi ,

by an earlier example. The result follows.
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