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Recall

Last time we used Green’s theorem to prove the following result.

Theorem 1 (Cauchy’s Theorem)

Let Ω be a bounded domain with piecewise smooth boundary ∂Ω.
If f : Ω → C is analytic, C 1, and f extends smoothly to ∂Ω, then

∫

∂Ω
f (z) dz = 0.

We also discussed the need to remove the C 1 hypothesis.

This can be done at the expense of limiting Ω to being a rectangle.

The “rectangular” Cauchy’s theorem can then be used to prove
more general, C 1-free versions.
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Preliminary Result

Lemma 1

Let Ω ⊂ C be a domain and f : Ω → C. If f is (complex)
differentiable at z0 ∈ Ω, then

f (z) = f (z0) + f ′(z0)(z − z0) + E (z), (1)

where

lim
z→z0

E (z)

z − z0
= 0.

Proof. Let E (z) = f (z)− f (z0)− f ′(z0)(z − z0). Then (1) holds
and

lim
z→z0

E (z)

z − z0
= lim

z→z0

(

f (z)− f (z0)

z − z0
− f ′(z0)

)

= f ′(z0)−f ′(z0) = 0.
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Cauchy’s Theorem Revisited

Theorem 2 (Cauchy’s Theorem for Rectangles)

Let Ω ⊂ C be a domain and let f : Ω → C be analytic. If R is a
closed rectangular region in Ω, then

∫

∂R

f (z) dz = 0.

Proof. Quarter R into 4 identical subrectangles, R
(1)
j , j = 1, 2, 3, 4.

If we orient all contours positively, we then have

∫

∂R

f (z) dz =
4

∑

j=1

∫

∂R
(1)
j

f (z) dz ,

because the integrals along the portions of the ∂R
(1)
j interior to R

cancel out.
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Thus there is a j so that

1

4

∣

∣

∣

∣

∫

∂R

f (z) dz

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

∂R
(1)
j

f (z) dz

∣

∣

∣

∣

∣

,

or equivalently, setting R (1) = R
(1)
j ,

∣

∣

∣

∣

∫

∂R

f (z) dz

∣

∣

∣

∣

≤ 4

∣

∣

∣

∣

∫

∂R(1)

f (z) dz

∣

∣

∣

∣

Now recursively continue this procedure.

Given rectangle R (k), subdivide it into fourths R
(k+1)
j as above,

and note that

∫

∂R(k)

f (z) dz =
4

∑

j=1

∫

∂R
(k+1)
j

f (z) dz .
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Then choose j so that R (k+1) := R
(k+1)
j satisfies

∣

∣

∣

∣

∫

∂R(k)
f (z) dz

∣

∣

∣

∣

≤ 4

∣

∣

∣

∣

∫

∂R(k+1)
f (z) dz

∣

∣

∣

∣

. (2)

The result is a nested sequence

R = R (0) ⊃ R (1) ⊃ R (2) ⊃ · · ·

of rectangles, each with dimensions half the size of the preceding
rectangle, and satisfying (2) for k ≥ 0.

Stringing the inequalities (2) together yields

∣

∣

∣

∣

∫

∂R

f (z) dz

∣

∣

∣

∣

≤ 4k
∣

∣

∣

∣

∫

∂R(k)

f (z) dz

∣

∣

∣

∣

,

for k ≥ 0.
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Let a × b be the dimensions of R . Then R (k) is a
2k

× b
2k
.

Because R is compact, and the R (k) are closed, nested and
nonempty, their intersection is nonempty.

The intersection cannot contain two points because the dimensions
of the R (k) become arbitrarily small.

Thus

∞
⋂

k=0

R (k) = {z0} for some z0 ∈ R .
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Use Lemma 1 to write

f (z) = f (z0) + f ′(z0)(z − z0) + E (z),

where

lim
z→z0

E (z)

z − z0
= 0.

Then
∫

∂R(k)
f (z) dz =

∫

∂R(k)
f (z0) + f ′(z0)(z − z0) dz +

∫

∂R(k)
E (z) dz

=

∫

∂R(k)

E (z) dz

by the fundamental theorem of calculus, since f (z0) + f ′(z0)(z − z0)
has an antiderivative and ∂R (k) is a closed path.
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Let ǫ > 0 and choose δ > 0 so that |E (z)/(z − z0)| < ǫ for
0 < |z − z0| < δ.

Choose K so large that R (k) is contained in |z − z0| < δ for k ≥ K .

Then for k ≥ K we have
∣

∣

∣

∣

∫

∂R(k)

f (z) dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂R(k)

E (z)

∣

∣

∣

∣

≤
∫

∂R(k)

|E (z)| |dz |

≤
∫

∂R(k)
ǫ|z − z0| |dz | ≤ ǫ∆kPk ,

where ∆k =
√
a2+b2

2k
is the length of the diagonal of R (k) and

Pk = a+b
2k−1 is the perimeter of R (k).
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Finally, for k ≥ K , we have

∣

∣

∣

∣

∫

∂R

f (z) dz

∣

∣

∣

∣

≤ 4k
∣

∣

∣

∣

∫

R(k)
f (z) dz

∣

∣

∣

∣

≤ 4kǫ

√
a2 + b2

2k
(a + b)

2k−1

= 2ǫ(a + b)
√

a2 + b2.

As this is true for any ǫ > 0, we conclude that

∫

∂R

f (z) dz = 0.
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Cauchy’s Theorem for a Disk

We can now generalize Cauchy’s theorem to arbitrary closed paths,
provided we assume Ω is a disk. For our applications this will be
sufficient.

Theorem 3 (Cauchy’s Theorem for a Disk)

Let z0 ∈ C and r > 0. Suppose f (z) is analytic on the disk
D = {z : |z − z0| < r}. Then:
1. f has an antiderivative in D;

2.

∫

γ

f (z) dz = 0 for any loop γ in D.

Proof. It suffices to prove 1, since 2 follows from 1 and FTOC.
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Given a, b ∈ C, let γ(a, b) denote the L-shaped path from a to b,
consisting of a horizontal line segment followed by a vertical
segment:

a

b

Re

Im z

z

� a,b(     )

For z ∈ D, the path γ(z0, z) lies in D, and we define

F (z) =

∫

γ(z0,z)
f (ζ) dζ.
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Notice that for w ∈ D,

F (w)− F (z) =

∫

γ(z ,w)
f (ζ) dζ +

∫

∂R

f (ζ) dζ

for a certain rectangular region R in D (there are several cases to
check):

z

z

w

0
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Notice that for w ∈ D,

F (w)− F (z) =

∫

γ(z ,w)
f (ζ) dζ +

∫

∂R

f (ζ) dζ

for a certain rectangular region R in D (there are several cases to
check):

z

z

w

0

R
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Notice that for w ∈ D,

F (w)− F (z) =

∫

γ(z ,w)
f (ζ) dζ +

∫

∂R

f (ζ) dζ

for a certain rectangular region R in D (there are several cases to
check):

z

z

w

0

�
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By Cauchy’s Theorem for Rectangles,
∫

∂R
f (ζ) dζ = 0. Thus

F (w)− F (z) =

∫

γ(z ,w)
f (ζ) dζ.

Graphically:

z

z

w

0

�
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By Cauchy’s Theorem for Rectangles,
∫

∂R
f (ζ) dζ = 0. Thus

F (w)− F (z) =

∫

γ(z ,w)
f (ζ) dζ.

Graphically:

z

z

w

0
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By Cauchy’s Theorem for Rectangles,
∫

∂R
f (ζ) dζ = 0. Thus

F (w)− F (z) =

∫

γ(z ,w)
f (ζ) dζ.

Graphically:

z

z

w

0
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Therefore

∣

∣

∣

∣

F (w)− F (z)

w − z
− f (z)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

w − z

∫

γ(z ,w)
f (ζ) dζ − f (z)

∣

∣

∣

∣

∣

=
1

|w − z |

∣

∣

∣

∣

∣

∫

γ(z ,w)
f (ζ) dζ − f (z)(w − z)

∣

∣

∣

∣

∣

=
1

|w − z |

∣

∣

∣

∣

∣

∫

γ(z ,w)
f (ζ) dζ − f (z)

∫

γ(z ,w)
dζ

∣

∣

∣

∣

∣

=
1

|w − z |

∣

∣

∣

∣

∣

∫

γ(z ,w)
f (ζ)− f (z) dζ

∣

∣

∣

∣

∣

.
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Let ǫ > 0 and use the continuity of f at z to choose δ > 0 so that
|f (ζ)− f (z)| < ǫ for 0 < |ζ − z | < δ.

Then for 0 < |w − z | < δ (in D) we have

1

|w − z |

∣

∣

∣

∣

∣

∫

γ(z ,w)
f (ζ)− f (z) dζ

∣

∣

∣

∣

∣

≤ ǫ · ℓ(γ(z ,w))

|w − z | ≤ ǫ
√
2,

since ℓ(γ(z ,w)) ≤
√
2|z − w | by the Cauchy-Schwartz inequality.

Since ǫ > 0 is arbitrary, this proves that

F ′(z) = lim
w→z

F (w)− F (z)

w − z
= f (z).
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