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Recall

Last time we used Green's theorem to prove the following result.

Theorem 1 (Cauchy’s Theorem)

Let Q2 be a bounded domain with piecewise smooth boundary 0fQ2.
If f: Q — C is analytic, C, and f extends smoothly to 0Q, then

/m f(z) dz = 0.

We also discussed the need to remove the C! hypothesis.

This can be done at the expense of limiting Q2 to being a rectangle.

The “rectangular” Cauchy's theorem can then be used to prove
more general, Cl-free versions.
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Preliminary Result

Lemma 1

Let Q C C be a domain and f : Q — C. If f is (complex)
differentiable at zo € €2, then

f(z) = f(z0) + f(20)(z — 20) + E(2), (1)
where

lim E(2)

zZ—20 Z — 20

=0

Proof. Let E(z) = f(z) — f(z0) — f'(z0)(z — zp). Then (1) holds

and
i E@) <M _ f’(zo)> — (20)—f'(z0) = 0.
z—20 Z — 29 z— 2z zZ—2
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Cauchy’s Theorem for Rectangles

Cauchy’s Theorem Revisited

Theorem 2 (Cauchy’s Theorem for Rectangles)

Let Q C C be a domain and let f : 2 — C be analytic. If R is a
closed rectangular region in €2, then

/aR £(z) dz = 0.

Proof. Quarter R into 4 identical subrectangles, Rj(l), j=1,234.
If we orient all contours positively, we then have

/aR f(z)dz :JZ:/;)R}“ f(z) dz,

because the integrals along the portions of the 8Rj(1)
cancel out.
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Cauchy’s Theorem for Rectangles

Thus there is a j so that

! /8Rf(z)dz <

4

/8R}1) f(z)dz

or equivalently, setting R(Y) = Rj(l),

/8 (e <4 /8 RO

Now recursively continue this procedure.

Given rectangle R(k), subdivide it into fourths Rj(kH) as above,

and note that
/. z>dz—z/Rm
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Cauchy’s Theorem for Rectangles

Then choose j so that RKk+1) .= Rj(kH) satisfies

/ f(z)dz / f(z)dz
OR(K) OR(k+1)

The result is a nested sequence

<4

: (2)

of rectangles, each with dimensions half the size of the preceding
rectangle, and satisfying (2) for k > 0.

Stringing the inequalities (2) together yields

/a;? f(z)dz /59R<k) f(z)dz

< 4%

9

for kK > 0.
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Cauchy’s Theorem for Rectangles

Let a x b be the dimensions of R. Then R(K) s 2% X 2%.

Because R is compact, and the R(*) are closed, nested and
nonempty, their intersection is nonempty.

The intersection cannot contain two points because the dimensions
of the R() become arbitrarily small.

Thus ﬂ R = {z} for some z5 € R.
k=0

Daileda Cauchy’s Theorem



Cauchy’s Theorem for Rectangles

Use Lemma 1 to write

f(z) = f(z0) + f'(20)(z — 20) + E(2),

where

jim £(Z)

z—2) Z — 2y

=0.
Then

/GR(k) f(z)dz = /8R(k)f(20) + f'(z0)(z — z0) dz + / E(z)dz

AR
= / E(z)dz
OR(K)

by the fundamental theorem of calculus, since f(z) + f'(z0)(z — z0)
has an antiderivative and R(¥) is a closed path.
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Cauchy’s Theorem for Rectangles

Let € > 0 and choose ¢ > 0 so that |E(z)/(z — zp)| < € for
0< |Z — Zo‘ < 0.

Choose K so large that R(¥) is contained in |z — zp| < 6 for k > K.

Then for kK > K we have

/ f(z)dz
AR

| JE@ < [ (e

OR(K) OR(K)

< / €|z — zo| |dz| < €Ay Py,
AR(Kk)

where Ay = ¥ a;:rbz is the length of the diagonal of R() and

P, = ;j_‘i is the perimeter of R().
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Cauchy’s Theorem for Rectangles

Finally, for k > K, we have

/8 f(2)dz

< 4%

/R , f(a)dz

\/32 + b% (a+ b)

2k—1
=2¢(a+ b)\/a2 + b2.

As this is true for any € > 0, we conclude that

/GR F(z) dz = .

< 4%
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Cauchy’s Theorem for a Disk

Cauchy’s Theorem for a Disk

We can now generalize Cauchy’s theorem to arbitrary closed paths,
provided we assume €2 is a disk. For our applications this will be
sufficient.

Theorem 3 (Cauchy's Theorem for a Disk)

Let zg € C and r > 0. Suppose f(z) is analytic on the disk
D={z:|z—z|<r}. Then:

1. f has an antiderivative in D;

2. / f(z) dz =0 for any loop 7 in D.
v

Proof. It suffices to prove 1, since 2 follows from 1 and FTOC.
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Cauchy’s Theorem for a Disk

Given a, b € C, let y(a, b) denote the L-shaped path from a to b,
consisting of a horizontal line segment followed by a vertical
segment:

{‘Imz

Y(a,b) r

—_—

Rez

' o

For z € D, the path «(zy, z) lies in D, and we define

F) - | IIRCLS
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Cauchy’s Theorem for a Disk

Notice that for w € D,

F(w) - F(z) = / RIS / F(¢)dc

oR

for a certain rectangular region R in D (there are several cases to
check):

Zy
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Cauchy’s Theorem for a Disk

Notice that for w € D,

f(¢) d¢
R

7]

F(w) — F(z) = / RIS /

for a certain rectangular region R in D (there are several cases to
check):

—
—~——

Zy
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Cauchy’s Theorem for a Disk

Notice that for w € D,

f(¢) d¢
R

7]

F(w) — F(z) = / RIS /

for a certain rectangular region R in D (there are several cases to
check):
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Cauchy’s Theorem for a Disk

By Cauchy’s Theorem for Rectangles, [, f({)d{ =0. Thus

Graphically:
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Cauchy’s Theorem for a Disk

By Cauchy’s Theorem for Rectangles, [, f({)d{ =0. Thus

Graphically:
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Cauchy’s Theorem for a Disk

By Cauchy’s Theorem for Rectangles, [, f({)d{ =0. Thus

Fw) - F(z) = / RGLS

Graphically:
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Therefore

L Ry BRI CEEC
1
T L . F(C)dC — F(2)(w — 2)
1
o L » F(¢) d¢ — £(2) L oy &€
1
|, O]




Cauchy’s Theorem for a Disk

Let € > 0 and use the continuity of f at z to choose § > 0 so that
If(¢) —f(z)| <efor0<|C—z <.

Then for 0 < |w — z| < 6 (in D) we have

1

lw — 2|

_elhw) s

w—z[  —

/ F(C) — F(2) dC
~(z,w)

since £(y(z, w)) < v/2|z — w| by the Cauchy-Schwartz inequality.

Since € > 0 is arbitrary, this proves that
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