Conformal Maps

Ryan C. Daileda

Trinity University

Complex Variables

Parametric Curves

Definition

A (parametric) curve in \mathbb{C} is a continuous function $\gamma:(0,1) \rightarrow \mathbb{C}$. If $x(t)=\operatorname{Re} \gamma(t)$ and $y(t)=\operatorname{Im} \gamma(t)$, we say γ is a C^{k} curve provided $x(t), y(t) \in C^{k}((0,1))$.

Remarks.

(1) One frequently identifies γ with it image $C=\gamma((0,1))$. Strictly speaking, however, the former is a description of the latter.
(2) Because all open intervals in \mathbb{R} are diffeomorphic, $(0,1)$ can be replaced by any other open interval.

Examples

(1) $\gamma(t)=t+i(m t+b), t \in \mathbb{R}$, is a smooth parametrization of the line $y=m x+b$.
(2) $\gamma(t)=t e^{i \theta_{0}}, t \in(0, \infty)$, is a smooth parametrization of the ray $\arg z=\theta_{0}$.
(3) $\gamma(t)=e^{i t}, t \in \mathbb{R}$, is a smooth parametrization of the unit circle.
(9) $\gamma(t)=t^{2}+i t, t \in \mathbb{R}$, parametrizes the rightward opening parabola $x=y^{2}$.

Tangent Vectors

Definition

If $\gamma(t)=x(t)+i y(t)$ is a C^{1} curve, its derivative is

$$
\gamma^{\prime}(t)=x^{\prime}(t)+i y^{\prime}(t)
$$

which is the familiar tangent vector in \mathbb{R}^{2}.
Notice that

$$
\begin{aligned}
\gamma^{\prime}(t) & =\left(\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}\right)+i\left(\lim _{h \rightarrow 0} \frac{y(t+h)-y(t)}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{x(t+h)+i y(t+h)-x(t)-i y(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\gamma(t+h)-\gamma(t)}{h}
\end{aligned}
$$

Compositions

Let $\Omega \subset \mathbb{C}$ be a domain and let $f: \Omega \rightarrow \mathbb{C}$ be analytic.
If γ is a curve in Ω, then its image under f, namely $\Gamma=f \circ \gamma$, is also a curve.
If γ is C^{1}, then for any t :

$$
\begin{aligned}
\Gamma^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{\Gamma(t+h)-\Gamma(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(\gamma(t+h))-f(\gamma(t))}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(\gamma(t+h))-f(\gamma(t))}{\gamma(t+h)-\gamma(t)} \cdot \frac{\gamma(t+h)-\gamma(t)}{h} \\
& =f^{\prime}(\gamma(t)) \gamma^{\prime}(t)
\end{aligned}
$$

so that Γ is also C^{1} with derivative given by the chain rule.

Summary

Theorem 1 (Chain Rule for Curves)

Suppose f is analytic at z_{0} and γ is any curve through z_{0}. Then the tangent vector to the image curve $\Gamma=f \circ \gamma$ at $f\left(z_{0}\right)$ is $f^{\prime}\left(z_{0}\right)$ (complex) multiplied by the tangent vector to γ at z_{0}.

Geometrically speaking, this is saying that locally f dilates and rotates tangent vectors, by $\left|f^{\prime}\right|$ and $\arg f^{\prime}$ (resp.).
This provides a geometric interpretation of $f^{\prime}\left(z_{0}\right)$.
This can also be seen in the Jacobian. If $f^{\prime}\left(z_{0}\right)=u_{x}+i v_{x}=r e^{i \theta}$:

$$
J_{f}\left(z_{0}\right)=\left(\begin{array}{cc}
u_{x} & -v_{x} \\
v_{x} & v_{y}
\end{array}\right)=\underbrace{\left(\begin{array}{cc}
r & 0 \\
0 & r
\end{array}\right)}_{\text {scalar }} \underbrace{\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)}_{\text {rotation }} .
$$

Angles

Now suppose curves γ_{1} and γ_{2} in Ω intersect at $z_{0}=\gamma_{1}\left(t_{1}\right)=\gamma_{2}\left(t_{2}\right)$.

The angle φ between γ_{1} and γ_{2} at z_{0} is defined to be the angle between the tangent vectors $\gamma_{1}^{\prime}\left(t_{1}\right)$ and $\gamma_{2}^{\prime}\left(t_{2}\right)$, or

$$
\varphi=\arg \left(\gamma_{2}^{\prime}\left(t_{2}\right)\right)-\arg \left(\gamma_{1}^{\prime}\left(t_{1}\right)\right)=\arg \left(\gamma_{2}^{\prime}\left(t_{2}\right) / \gamma_{1}^{\prime}\left(t_{1}\right)\right) .
$$

Notice that φ is not symmetric in γ_{1} and γ_{2}. So our angles come with an orientation: counterclockwise from γ_{1} to γ_{2}.

Let f be analytic at z_{0}. Let $\Gamma_{j}=f \circ \gamma_{j}$ be the image of γ_{j} under f $(j=1,2)$. These intersect at $w_{0}=f\left(z_{0}\right)=\Gamma_{1}\left(t_{1}\right)=\Gamma_{2}\left(t_{2}\right)$.

The tangent vectors at w_{0} are $\Gamma^{\prime}\left(t_{j}\right)=f^{\prime}\left(z_{0}\right) \gamma_{j}^{\prime}\left(t_{j}\right)$, by the chain rule.

If $f^{\prime}\left(z_{0}\right) \neq 0$, the angle between the image curves Γ_{1} and Γ_{2} is

$$
\begin{aligned}
\varphi^{\prime} & =\arg \left(\Gamma_{2}^{\prime}\left(t_{2}\right) / \Gamma_{1}^{\prime}\left(t_{1}\right)\right) \\
& =\arg \left(\frac{f^{\prime}\left(z_{0}\right) \gamma_{2}^{\prime}\left(t_{2}\right)}{f^{\prime}\left(z_{0}\right) \gamma_{1}^{\prime}\left(t_{1}\right)}\right) \\
& =\arg \left(\gamma_{2}^{\prime}\left(t_{2}\right) / \gamma_{1}^{\prime}\left(t_{1}\right)\right) \\
& =\varphi .
\end{aligned}
$$

Thus, f preserves the angles between tangent vectors at each point! (In both magnitude and orientation).

Conformality

Definition

Let $\Omega \subset \mathbb{R}^{2}$ be a domain. A map $\Omega \rightarrow \mathbb{R}^{2}$ is called conformal if it preserves angles (in magnitude and orientation) at every point in Ω.

We have now seen:

Theorem 2

An analytic function $f(z)$ is conformal everywhere that $f^{\prime}(z) \neq 0$.
As an easy non-example we have:

Example 1

The function $f(z)=\bar{z}$ is not conformal.
This is simply because reflections reverse the orientations of angles.

Examples

Example 2

z^{2} and \sqrt{z}

Example 3

e^{z} and $\log z$

Example 4
$\sin z$

Example 5

$1 / z$
(See Maple)

