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Pointwise and Uniform Convergence

Sequences of Functions

Let E C C and for each n€ N let f, : E — C. There are two
primary notions of the convergence of the sequence {f,}.

Definition (Pointwise Convergence)

We say {f,} converges (pointwise) to f : E — C if f,(z) — f(z)
for each z € E.

Definition (Uniform Convergence)

We say {f,} converges uniformly on E to f : E — C provided for
every € > 0 there is an N € N so that |f,(z) — f(z)| < € for all
n>Nand z € E.

It is clear that uniform convergence on E implies pointwise
convergence on E.
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Pointwise and Uniform Convergence

SETES

The mode of convergence of a sequence {f,} depends as much on
f, as it does on E.

Let f,(z) = z". Show that f, — 0 on D = {|z| < 1}, but not
uniformly.

Solution. If |z| < 1, then |fo(2)| = |2"| = |z|" — 0 as n — 0.
Hence f, — 0 pointwise.
However, for any N € N, z =1/4/2 € D and |fy(z)| = 1/2.

So {f,} cannot be made uniformly small on D. O

[BETI[LEY Sequences of Functions



Pointwise and Uniform Convergence

Show that for any 0 < r < 1, f, — 0 uniformly on D, = {|z| < r}.

Solution. Let € > 0 and choose N so that rVN < e.
Then for n > N and z € D, one has
Ifa(2)] = |z|" < r" < N <e.

Thus f, — 0 uniformly on D,. O
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Pointwise and Uniform Convergence

Cauchy Sequences

Let E C C and f, : E — C a sequence of functions.

Definition (Pointwise Cauchy)

We say {f,} is pointwise Cauchy if {f,(z)} is a Cauchy sequence
for every z € E.

Definition (Uniformly Cauchy)

We say {f,} is uniformly Cauchy on E if for every € > 0 there is an
N € N so that |f,,(z) — f,(z)| < € for all m,n > N and all z € E.

Clearly uniformly Cauchy implies pointwise Cauchy, which is
equivalent to pointwise convergence.

The notion of uniformly Cauchy will be useful when dealing with
series of functions.
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Pointwise and Uniform Convergence

Uniformly Cauchy iff Uniformly Convergent

Let E C C and f, : E — C a sequence of functions.

The sequence {f,} is uniformly Cauchy on E if and only if it is
uniformly convergent on E.

Proof (sketch). (<) Exercise.
(=) Suppose {f,} is uniformly Cauchy.

Then {f,} is pointwise Cauchy/convergent with limit function
f:E—C.

We claim that f, — f uniformly.
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Pointwise and Uniform Convergence

Let € > 0.

Choose N € N so that |f(z) — fo(2)| < € for all m,n > N and
zeE.

For each z € E choose N, € N so that |f,(z) — f(z)| < € for
n>N,.

Then for any z € E and m = max{N, N} one has

fn(2) = F(2)] < [fn(2) = fn(2)] + |fim(2) — £(2)] < 2e.

Finally, for n > N and z € E we have
[fn(2) — £(2)] < [fa(2) — fn(2)] + |fn(2) — £(2)] < 3e.

Since € > 0 was arbitrary, the result follows. ]
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Pointwise and Uniform Convergence

Properties of Uniformly Convergent Sequences

Uniformly convergent sequences enjoy many properties that
pointwise convergent sequences do not.
By a standard “3e argument” as above one can prove that:

If f, : E — C are continuous and converge uniformly to f : E — C,
then f is continuous.

Of particular importance for us is the next property.

Theorem 3

Let y be a piecewise C! path and suppose that {f,} are
continuous and converge uniformly on ~y. Then

nll_}ngo[{fn(z) dz = /fnango fa(z) dz.
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Pointwise and Uniform Convergence

Proof

Theorem 2 implies that f(z) = lim,_,« fn(2) is continuous on 7.
So f7 limy—00 fn(2) dz makes sense.

Let € > 0 and choose N € N so that |f,(z) — f(z)| < € for all
n>Nand z €.

Then for n > N we have
/f,,(z) dz — / f(z)dz
¥ v

Since L(7) is fixed and € > 0 is arbitrary, we are finished. O

<e-L().

[{ fn(z) — f(z) dz
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Series of Functions

Series of Functions

Before moving on to analytic functions, we need an important
result on uniform convergence of series.

Suppose gi : E — C is a sequence of functions and let
n
Sn(z) = Y &(2)
k=1
denote the nth partial sum of >_ gi(2).

We say that the series > gk(z) converges (pointwise or uniformly)
on E provided {S,(z)} does.
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Series of Functions

The M-Test

Perhaps the most important fundamental tool for studying the
convergence of series of functions is:

Theorem 4 (Weierstrass M-test)

Let g : E — C be a sequence of functions. Suppose there are
constants M, > 0 so that:

1. |gk(z)| < My for all k and all z € E;
2. > My converges.

Then " gk(z) converges absolutely and uniformly on E.

Proof. Absolute convergence at any z € E follows from the
comparison test.
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Series of Functions

To prove uniform convergence, it suffices to prove that the
sequence {S,(z)} of partial sums is uniformly Cauchy on E.

Let € > 0. Because Y My converges (absolutely), there is an
N € N so that

for n > m > N. But then for any z € E,

Z gk(z)| <

k=m+1

|Sm(z) — Sn(z)| =

Z M, < e

k=m+1

forn>m>N. O
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Series of Functions

SETES

Show that the geometric series > z* converges uniformly on
|z| <r, forany 0 <r < 1.

Solution. If |z| < r, then |z¥| = |z|k < rk.
Since S_ r* converges, the result follows from the M-test. O

Example 4

Show that the geometric series > z* does not converge uniformly
on the open disk |z| < 1.

Solution. For |z| < 1 we have Y 2, zk = ﬁ and
1 z k > k |Z‘n+1
1_2_22 - ZZ _|1—Z‘.
k=0 k=n+1
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Series of Functions

But the right-hand side cannot be made uniformly small for
|z| < 1. (Exercise) O

In the context of series, we remark that Theorem 3 has the
following restatement.

Theorem 5

Let v be a piecewise C' path and suppose that {gi} are
continuous on 7. If > gk converges uniformly on -y, then

i / gi(2) dz = / gjlgk(z) .
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Normal Convergence

Normal Convergence

When dealing with sequences of analytic functions, there's another
very useful type of convergence.

Definition

Let Q C C be a domain and let f, : Q — C be a sequence of
functions. We say that {f,} converges normally on Q provided {f,}
converges uniformly on every compact subset of .

Remarks.

© Normal convergence on €2 is equivalent to uniform
convergence on every closed subdisk of .

© Because {x} is compact, {f,} converges pointwise to a
common limit function f throughout 2.

[BETI[LEY Sequences of Functions



Normal Convergence

Example

Show that the geometric series " z¥ converges normally on
|z| < 1.

Solution. Let E C {|z| < 1} be compact.
Then there is an 0 < r < 1 so that E C {|z| < r}.

We have already seen that > z* converges uniformly on {|z| < r},
so it does the same on E. O
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Normal Convergence

Properties of Normally Convergent Sequences

Theorem 6

Let Q C C be a domain and suppose {f,} is a sequence of analytic
functions on Q. If {f,} converges normally on S to f, then f is
analytic on Q.

Proof. We apply Morera's theorem.

Because each f, is continuous, and f, — f locally uniformly, f is
continuous on €.

Let R be a closed rectangular region in .

OR is a compact loop, so Cauchy's theorem and Theorem 3 imply

Ozlim/ fo(z dz:/ lim f,(z dz:/ f(z)dz.
am (2) e, () - ()

It follows that f is analytic on €. O
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Normal Convergence

If we try a little harder, we can actually say more. Because of the
Cauchy integral formula, normal convergence “descends” to
derivatives.

Let Q C C and suppose {f,} is a sequence of analytic functions on
Q. If {f,} converges normally on Q to f, then {f)} converges
normally on Q to f'.

Proof.Let D = {|z — z9| < R} be a closed disk of radius R
contained in 2.

Because Q is open, there is a p > R so that the (slightly larger)
open disk |z — zy| < p is also contained in Q.

Fix R<r<p. Let C, ={|z — z| =r}.
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Normal Convergence

Because f and f, are analytic on |z — z| < p, the Cauchy integral
formula implies

oy L[ QO e L[ Q)
fl2) =55 /C (¢ —2z)2 de and £ (2) =55 /c (€ —2)? v

for z € D (which is inside C;) and n € N.

Now on C, we have

IK—z|>|(—20|—|zo—2z|=r—|z—2|>r—R>0.

Given € > 0, use normal convergence to find N € N so that
|fa(C) — f({)| < eforall ¢ € C, and all n > N.
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Normal Convergence

The two Cauchy integral formulae above then imply that for z € D

and n > N:
/ i L Q) -
7)) = 5| [ SR o
1 €
< %m(%ﬁ)
= m

Because R and r are fixed, the RHS can be made arbitrarily small,
for all z € D.

Hence f, — f’ uniformly on D.

Since D was arbitrary, this proves that f, — f’ normally on Q. [
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Normal Convergence

Normal Convergence of Higher Derivatives

Suppose {f,} are analytic and f, — f normally on a domain Q.
We have just seen that then f) — f’ normally on Q.
But f] is also sequence of analytic functions!

So we may apply Theorem 7 inductively to reach the following
conclusion.

Suppose {f,} is a sequence of analytic functions on a domain Q. If

f, — f normally on Q, then for all m € N the sequence {f,,(m)} of
mth derivatives converges normally on Q to f(™).
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Normal Convergence

Example

We have seen that >~ z¥ converges normally on |z| < 1, and that

00
Ezk:

k=0

By the corollary we then have
1 d 1

(e il D DL D D L Bl

normally for |z| < 1, which we derived earlier by other means.
In a similar manner we can show

[ee]

2
k(k—1)zF2= ——— for |z| <1.
ps (1-2)3
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