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Sequences of Functions

Let E ⊂ C and for each n ∈ N let fn : E → C. There are two
primary notions of the convergence of the sequence {fn}.

Definition (Pointwise Convergence)

We say {fn} converges (pointwise) to f : E → C if fn(z) → f (z)
for each z ∈ E .

Definition (Uniform Convergence)

We say {fn} converges uniformly on E to f : E → C provided for
every ǫ > 0 there is an N ∈ N so that |fn(z)− f (z)| < ǫ for all
n ≥ N and z ∈ E .

It is clear that uniform convergence on E implies pointwise
convergence on E .
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Examples

The mode of convergence of a sequence {fn} depends as much on
fn as it does on E .

Example 1

Let fn(z) = zn. Show that fn → 0 on D = {|z | < 1}, but not
uniformly.

Solution. If |z | < 1, then |fn(z)| = |zn| = |z |n → 0 as n → ∞.

Hence fn → 0 pointwise.

However, for any N ∈ N, z = 1/ N
√
2 ∈ D and |fN(z)| = 1/2.

So {fn} cannot be made uniformly small on D.
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Example 2

Show that for any 0 < r < 1, fn → 0 uniformly on Dr = {|z | ≤ r}.

Solution. Let ǫ > 0 and choose N so that rN < ǫ.

Then for n ≥ N and z ∈ Dr one has

|fn(z)| = |z |n ≤ rn ≤ rN < ǫ.

Thus fn → 0 uniformly on Dr .
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Cauchy Sequences

Let E ⊂ C and fn : E → C a sequence of functions.

Definition (Pointwise Cauchy)

We say {fn} is pointwise Cauchy if {fn(z)} is a Cauchy sequence
for every z ∈ E .

Definition (Uniformly Cauchy)

We say {fn} is uniformly Cauchy on E if for every ǫ > 0 there is an
N ∈ N so that |fm(z)− fn(z)| < ǫ for all m, n ≥ N and all z ∈ E .

Clearly uniformly Cauchy implies pointwise Cauchy, which is
equivalent to pointwise convergence.

The notion of uniformly Cauchy will be useful when dealing with
series of functions.
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Uniformly Cauchy iff Uniformly Convergent

Let E ⊂ C and fn : E → C a sequence of functions.

Theorem 1

The sequence {fn} is uniformly Cauchy on E if and only if it is
uniformly convergent on E.

Proof (sketch). (⇐) Exercise.

(⇒) Suppose {fn} is uniformly Cauchy.

Then {fn} is pointwise Cauchy/convergent with limit function
f : E → C.

We claim that fn → f uniformly.
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Let ǫ > 0.

Choose N ∈ N so that |fm(z)− fn(z)| < ǫ for all m, n ≥ N and
z ∈ E .

For each z ∈ E choose Nz ∈ N so that |fn(z)− f (z)| < ǫ for
n ≥ Nz .

Then for any z ∈ E and m = max{N,Nz} one has

|fN(z)− f (z)| ≤ |fN(z)− fm(z)|+ |fm(z)− f (z)| < 2ǫ.

Finally, for n ≥ N and z ∈ E we have

|fn(z)− f (z)| ≤ |fn(z)− fN(z)|+ |fN(z)− f (z)| < 3ǫ.

Since ǫ > 0 was arbitrary, the result follows.
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Properties of Uniformly Convergent Sequences

Uniformly convergent sequences enjoy many properties that
pointwise convergent sequences do not.
By a standard “3ǫ argument” as above one can prove that:

Theorem 2

If fn : E → C are continuous and converge uniformly to f : E → C,
then f is continuous.

Of particular importance for us is the next property.

Theorem 3

Let γ be a piecewise C 1 path and suppose that {fn} are
continuous and converge uniformly on γ. Then

lim
n→∞

∫

γ

fn(z) dz =

∫

γ

lim
n→∞

fn(z) dz .
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Proof

Theorem 2 implies that f (z) = limn→∞ fn(z) is continuous on γ.

So
∫

γ
limn→∞ fn(z) dz makes sense.

Let ǫ > 0 and choose N ∈ N so that |fn(z)− f (z)| < ǫ for all
n ≥ N and z ∈ γ.

Then for n ≥ N we have
∣

∣

∣

∣

∫

γ

fn(z) dz −
∫

γ

f (z) dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

γ

fn(z)− f (z) dz

∣

∣

∣

∣

< ǫ · L(γ).

Since L(γ) is fixed and ǫ > 0 is arbitrary, we are finished.
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Series of Functions

Before moving on to analytic functions, we need an important
result on uniform convergence of series.

Suppose gk : E → C is a sequence of functions and let

Sn(z) =

n
∑

k=1

gk(z)

denote the nth partial sum of
∑

gk(z).

We say that the series
∑

gk(z) converges (pointwise or uniformly)
on E provided {Sn(z)} does.
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The M-Test

Perhaps the most important fundamental tool for studying the
convergence of series of functions is:

Theorem 4 (Weierstrass M-test)

Let gk : E → C be a sequence of functions. Suppose there are
constants Mk ≥ 0 so that:

1. |gk(z)| ≤ Mk for all k and all z ∈ E;

2.
∑

Mk converges.

Then
∑

gk(z) converges absolutely and uniformly on E.

Proof. Absolute convergence at any z ∈ E follows from the
comparison test.
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Proof

To prove uniform convergence, it suffices to prove that the
sequence {Sn(z)} of partial sums is uniformly Cauchy on E .

Let ǫ > 0. Because
∑

Mk converges (absolutely), there is an
N ∈ N so that

n
∑

k=m+1

Mk < ǫ

for n > m ≥ N. But then for any z ∈ E ,

|Sm(z)− Sn(z)| =
∣

∣

∣

∣

∣

n
∑

k=m+1

gk(z)

∣

∣

∣

∣

∣

≤
n

∑

k=m+1

Mk < ǫ

for n > m ≥ N.
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Examples

Example 3

Show that the geometric series
∑

zk converges uniformly on
|z | ≤ r , for any 0 < r < 1.

Solution. If |z | ≤ r , then |zk | = |z |k ≤ rk .
Since

∑

rk converges, the result follows from the M-test.

Example 4

Show that the geometric series
∑

zk does not converge uniformly
on the open disk |z | < 1.

Solution. For |z | < 1 we have
∑

∞

k=0 z
k = 1

1−z
and

∣

∣

∣

∣

∣

1

1− z
−

n
∑

k=0

zk

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

k=n+1

zk

∣

∣

∣

∣

∣

=
|z |n+1

|1− z | .
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But the right-hand side cannot be made uniformly small for
|z | < 1. (Exercise)

In the context of series, we remark that Theorem 3 has the
following restatement.

Theorem 5

Let γ be a piecewise C 1 path and suppose that {gk} are
continuous on γ. If

∑

gk converges uniformly on γ, then

∞
∑

k=1

∫

γ

gk(z) dz =

∫

γ

∞
∑

k=1

gk(z) dz .
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Normal Convergence

When dealing with sequences of analytic functions, there’s another
very useful type of convergence.

Definition

Let Ω ⊂ C be a domain and let fn : Ω → C be a sequence of
functions. We say that {fn} converges normally on Ω provided {fn}
converges uniformly on every compact subset of Ω.

Remarks.

1 Normal convergence on Ω is equivalent to uniform
convergence on every closed subdisk of Ω.

2 Because {x} is compact, {fn} converges pointwise to a
common limit function f throughout Ω.
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Example

Example 5

Show that the geometric series
∑

zk converges normally on
|z | < 1.

Solution. Let E ⊂ {|z | < 1} be compact.

Then there is an 0 < r < 1 so that E ⊂ {|z | ≤ r}.

We have already seen that
∑

zk converges uniformly on {|z | ≤ r},
so it does the same on E .
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Properties of Normally Convergent Sequences

Theorem 6

Let Ω ⊂ C be a domain and suppose {fn} is a sequence of analytic
functions on Ω. If {fn} converges normally on Ω to f , then f is
analytic on Ω.

Proof. We apply Morera’s theorem.

Because each fn is continuous, and fn → f locally uniformly, f is
continuous on Ω.

Let R be a closed rectangular region in Ω.

∂R is a compact loop, so Cauchy’s theorem and Theorem 3 imply

0 = lim
n→∞

∫

∂R

fn(z) dz =

∫

∂R

lim
n→∞

fn(z) dz =

∫

∂R

f (z) dz .

It follows that f is analytic on Ω.
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If we try a little harder, we can actually say more. Because of the
Cauchy integral formula, normal convergence “descends” to
derivatives.

Theorem 7

Let Ω ⊂ C and suppose {fn} is a sequence of analytic functions on
Ω. If {fn} converges normally on Ω to f , then {f ′n} converges
normally on Ω to f ′.

Proof.Let D = {|z − z0| ≤ R} be a closed disk of radius R
contained in Ω.

Because Ω is open, there is a ρ > R so that the (slightly larger)
open disk |z − z0| < ρ is also contained in Ω.

Fix R < r < ρ. Let Cr = {|z − z0| = r}.
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Because f and fn are analytic on |z − z0| < ρ, the Cauchy integral
formula implies

f ′(z) =
1

2πi

∫

Cr

f (ζ)

(ζ − z)2
dζ and f ′n(z) =

1

2πi

∫

Cr

fn(ζ)

(ζ − z)2
dζ,

for z ∈ D (which is inside Cr ) and n ∈ N.

Now on Cr we have

|ζ − z | ≥ |ζ − z0| − |z0 − z | = r − |z − z0| ≥ r − R > 0.

Given ǫ > 0, use normal convergence to find N ∈ N so that
|fn(ζ)− f (ζ)| < ǫ for all ζ ∈ Cr and all n ≥ N.
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The two Cauchy integral formulae above then imply that for z ∈ D
and n ≥ N:

∣

∣f ′(z)− f ′n(z)
∣

∣ =
1

2π

∣

∣

∣

∣

∫

Cr

f (ζ)− fn(ζ)

(ζ − z)2
dζ

∣

∣

∣

∣

≤ 1

2π

ǫ

(r − R)2
(2πr)

=
rǫ

(r − R)2
.

Because R and r are fixed, the RHS can be made arbitrarily small,
for all z ∈ D.

Hence f ′n → f ′ uniformly on D.

Since D was arbitrary, this proves that f ′n → f ′ normally on Ω.
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Normal Convergence of Higher Derivatives

Suppose {fn} are analytic and fn → f normally on a domain Ω.

We have just seen that then f ′n → f ′ normally on Ω.

But f ′n is also sequence of analytic functions!

So we may apply Theorem 7 inductively to reach the following
conclusion.

Corollary 1

Suppose {fn} is a sequence of analytic functions on a domain Ω. If

fn → f normally on Ω, then for all m ∈ N the sequence {f (m)
n } of

mth derivatives converges normally on Ω to f (m).
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Example

We have seen that
∑

zk converges normally on |z | < 1, and that

∞
∑

k=0

zk =
1

1− z
.

By the corollary we then have

1

(1− z)2
=

d

dz

1

1− z
=

d

dz

∞
∑

k=0

zk =
∞
∑

k=0

d

dz
zk =

∞
∑

k=1

kzk−1,

normally for |z | < 1, which we derived earlier by other means.
In a similar manner we can show

∞
∑

k=2

k(k − 1)zk−2 =
2

(1− z)3
for |z | < 1.
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