# Harmonic Functions

# Ryan C. Daileda



Trinity University

Complex Variables

# Definition

The Laplacian (in two variables) is the differential operator

$$\Delta = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

#### Definition

Let  $\Omega \subset \mathbb{R}^2$  be a domain and  $u \in C^2(\Omega)$ . We say u is harmonic provided

$$\Delta u = 0$$

throughout  $\Omega$ .

**Recall:** If  $u(x, y) \in C^2(\Omega)$ , then

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$$

throughout  $\Omega$  (*Clairaut's theorem*).

#### Example 1

The function  $u(x, y) = x^3 - 3xy^2$  is harmonic on  $\mathbb{C}$ .

Indeed, u is clearly  $C^2$  and

$$\frac{\partial u}{\partial x} = 3x^2 - 3y^2 \quad \Rightarrow \quad \frac{\partial^2 u}{\partial x^2} = 6x, \\ \frac{\partial u}{\partial y} = -6xy \quad \Rightarrow \quad \frac{\partial^2 u}{\partial y^2} = -6x, \end{cases} \Rightarrow \quad \Delta u = 0.$$

#### Example 2

The function  $u(x, y) = \arctan(y/x)$  is harmonic for x > 0.

In this case

$$\frac{\partial u}{\partial x} = \frac{-y/x^2}{1+(y/x)^2} = \frac{-y}{x^2+y^2} \quad \Rightarrow \quad \frac{\partial^2 u}{\partial x^2} = \frac{2xy}{(x^2+y^2)^2}$$

and

$$\frac{\partial u}{\partial y} = \frac{1/x}{1+(y/x)^2} = \frac{x}{x^2+y^2} \quad \Rightarrow \quad \frac{\partial^2 u}{\partial y^2} = \frac{-2xy}{(x^2+y^2)^2}.$$

Thus  $\Delta u = 0$  and u is harmonic.

More generally we have the following result.

#### Theorem 1

Let  $\Omega \subset \mathbb{C}$  be a domain,  $f : \Omega \to \mathbb{C}$ ,  $u = \operatorname{Re} f$  and  $v = \operatorname{Im} f$ . If f is analytic and  $u, v \in C^2(\Omega)$ , then u and v are harmonic on  $\Omega$ .

## Remarks.

- The  $C^2$  hypothesis is actually unnecessary. As we will see, if f is analytic, then Re f and Im f are in fact  $C^{\infty}$ .
- We will see that *every* harmonic function is (locally) the real part of an analytic function.

Proof. By the C-R equations and Clairaut's theorem we have

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \frac{\partial v}{\partial y} = \frac{\partial}{\partial y} \frac{\partial v}{\partial x} = -\frac{\partial^2 u}{\partial y^2},$$

which implies that  $\Delta u = 0$ . Similarly,  $\Delta v = 0$ .

#### Definition

Let  $\Omega \subset \mathbb{R}^2$  be a domain and let  $u : \Omega \to \mathbb{R}$  be harmonic. We say that  $v \in C^2(\Omega)$  is a *harmonic conjugate* of u (on  $\Omega$ ) provided u and v satisfy the C-R equations on  $\Omega$ :

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Equivalently, provided f = u + iv is analytic on  $\Omega$ .

## Remarks.

- If u is harmonic and v is a conjugate of u, then v is also harmonic.
- Being "a harmonic conjugate of" is *not* symmetric. One *cannot* simply say that *u* and *v* are "harmonic conjugates of one another."

If v is a harmonic conjugate of u, then -u is a harmonic conjugate of v: if f = u + iv is analytic, then so is -if = v - iu.

#### Example 3

Show that  $v = 3x^2y - y^3$  is a harmonic conjugate of  $u = x^3 - 3xy^2$ .

We simply notice that if  $f(z) = z^3$ , then f is entire and by the binomial theorem

$$f(x + iy) = (x + iy)^3 = x^3 + 3ix^2y - 3xy^2 - iy^3$$
  
=  $\underbrace{(x^3 - 3xy^2)}_{u} + i\underbrace{(3x^2y - y^3)}_{v}.$ 

#### Example 4

Find a harmonic conjugate for  $u = \arctan(y/x)$ , x > 0.

For x > 0,  $\arctan(y/x) = \operatorname{Arg}(x + iy)$ . Let  $f(z) = \operatorname{Log} z$ .

Then -if(z) is analytic for x > 0 and is given by

$$-i \operatorname{Log} z = -i(\ln |z| + i \operatorname{Arg} z) = \underbrace{\operatorname{Arg} z}_{u} -i \ln |z|.$$

Therefore a harmonic conjugate of  $u = \operatorname{Arg} z$  is

$$v = -\ln |z| = -\frac{1}{2} \ln (x^2 + y^2).$$

Harmonic conjugates are *almost* unique. To prove this we require a preliminary result.

#### Lemma 1

Let  $\Omega \subset \mathbb{C}$  be a domain and  $f : \Omega \to \mathbb{C}$  analytic. If the image of f is contained in a line, then f is constant.

*Proof.* Let  $u = \operatorname{Re} f$  and  $v = \operatorname{Im} f$ , and suppose  $f(\Omega)$  is a subset of the line

$$aX + bY = c$$
,  $(a, b) \neq (0, 0)$ .

Then au(x, y) + bv(x, y) = c for all  $(x, y) \in \Omega$ . Differentiating and applying the C-R equations we obtain

$$\begin{array}{rcl} & au_x + bv_x & = & 0, \\ au_y + bv_y & = & -av_x + bu_x & = & 0, \end{array} \right\} \ \Rightarrow \ \begin{pmatrix} u_x & v_x \\ -v_x & u_x \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

throughout  $\Omega$ . Because  $(a, b) \neq (0, 0)$ ,

$$0 = \det \begin{pmatrix} u_x & v_x \\ -v_x & u_x \end{pmatrix} = u_x^2 + v_x^2 = |f'(z)|^2 \Rightarrow f'(z) = 0,$$

everywhere in  $\Omega$ . As we have seen, this implies that f is constant.

#### Theorem 2

Let  $\Omega \subset \mathbb{R}^2$  be a domain and suppose u is harmonic on  $\Omega$ . If  $v_1$  and  $v_2$  are harmonic conjugates of u on  $\Omega$ , then there is an  $a \in \mathbb{R}$  so that  $v_1 = v_2 + a$ .

*Proof.* Let  $f_j = u + iv_j$  for j = 1, 2. Then  $f_1, f_2$  are analytic on  $\Omega$ . Therefore  $f_1 - f_2 = i(v_1 - v_2)$  is analytic and purely imaginary on  $\Omega$ . By the lemma,  $f_1 - f_2$  is constant. The result follows.

This addresses the uniqueness of harmonic conjugates. What about existence?

#### Example 5

Does  $u = \ln (x^2 + y^2)$  have a harmonic conjugate on  $\mathbb{C}^{\times}$ ?

Assume f = u + iv is analytic on  $\mathbb{C}^{\times}$ . Then so is f/2.

Notice that 
$$\operatorname{Re}(f/2) = u/2 = \ln |z| = \operatorname{Re}(\operatorname{Log} z)$$
 on  $\mathbb{C} \setminus (-\infty, 0]$ .

Therefore both v/2 and Arg z are conjugates of u/2 on the slit plane.

Thus Arg z = a + v/2 for some  $a \in \mathbb{R}$ .

But a + v/2 extends continuously to  $\mathbb{C}^{\times}$ , whereas Arg z does not.

So *u* cannot have a conjugate on  $\mathbb{C}^{\times}$ .

It turns out the problem in the preceding example is fact that  $\mathbb{C}^\times$  is multiply connected.

## Theorem 3

Let  $\Omega \subset \mathbb{C}$  be a domain and let  $u : \Omega \to \mathbb{R}$  be harmonic. If  $\Omega$  is simply connected, then u has a harmonic conjugate on  $\Omega$ .

Sketch of Proof. Fix  $P_0 \in \Omega$ , let  $\omega = -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy$  and for  $P \in \Omega$  define

$$v(P)=\int_{P_0}^{r}\omega,$$

where the integral is taken along any piecewise smooth curve in  $\Omega$  from  $P_0$  to P.

We first claim that v is well-defined, i.e. is path-independent.

Let  $C_1, C_2$  be paths in  $\Omega$  from  $P_0$  to P. Then  $C_1 - C_2$  is a loop in  $\Omega$ . Let R be the region enclosed by  $C_1 - C_2$ .

Because  $\Omega$  is simply connected,  $R \subset \Omega$ . Green's theorem then implies

$$\int_{C_1-C_2} \omega = \iint_R d\omega = \iint_R \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x}\right) - \frac{\partial}{\partial y} \left(-\frac{\partial u}{\partial y}\right) dA$$
$$= \iint_R \Delta u \, dA = 0,$$

since u is harmonic. Thus

$$\int_{\mathcal{C}_1} \omega = \int_{\mathcal{C}_2} \omega,$$

and v is well-defined.

To differentiate v at  $P = (x, y) \in \Omega$ , let  $P' = (x + \Delta x, y)$ .

Let C be any path in  $\Omega$  from  $P_0$  to P and let C' = C + L, where L is the horizontal segment from P to P'.

Then

$$v_{x}(x,y) = \lim_{\Delta x \to 0} \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{L} \omega$$
$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{0}^{\Delta x} -u_{y}(x + t, y) dt$$
$$= \lim_{\Delta x \to 0} -u_{y}(x + h, y)$$

for some  $h \in [0, \Delta x]$ , by the Mean Value Theorem.

Since  $h \rightarrow 0$  as  $\Delta x \rightarrow 0$ , and  $u_y$  is continuous, we find that

$$v_{x}(x,y) = -u_{y}(x,y).$$

By instead using a vertical segment one can compute  $v_y(x, y)$  in a similar manner. The result is

$$v_y(x,y)=u_x(x,y).$$

Thus, v is a harmonic conjugate of u on  $\Omega$ .

# Remarks.

- Using a different base point  $P_1$  yields a conjugate  $v_1$  that differs from v by the additive constant  $\int_{P_0}^{P_1} \omega$ .
- Strictly speaking, Green's theorem only applies to simple closed curves, a hypothesis we cannot assume for  $C_1 C_2$ .
- A rigorous proof applies Green's theorem locally, to subdivisions of the homotopy between C<sub>1</sub> and C<sub>2</sub> in Ω.

# Corollary 1

Harmonic conjugates always exist locally.

Assuming the  $C^{\infty}$  nature of analytic functions, we have the following result as well.

#### Corollary 2

Let  $\Omega \subset \mathbb{R}^2$  be a domain. If  $u \in C^2(\Omega)$  and  $\Delta u = 0$  on  $\Omega$ , then  $u \in C^{\infty}(\Omega)$ .

*Proof.* Let  $P \in \Omega$ . Choose an open disk  $D \subset \Omega$  containing P.

Since D is simply connected and u is harmonic on D, there is an analytic function  $f: D \to \mathbb{C}$  so that  $u = \operatorname{Re} f$ .

It follows that  $u \in C^{\infty}(D)$ . Since  $P \in \Omega$  was arbitrary, we conclude that  $u \in C^{\infty}(\Omega)$ .