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Definition

The Laplacian (in two variables) is the differential operator

∆ = ∇2 =
∂2

∂x2
+

∂2

∂y2
.

Definition

Let Ω ⊂ R
2 be a domain and u ∈ C 2(Ω). We say u is harmonic

provided
∆u = 0

throughout Ω.

Recall: If u(x , y) ∈ C 2(Ω), then

∂2u

∂x∂y
=

∂2u

∂y∂x

throughout Ω (Clairaut’s theorem).
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Example 1

The function u(x , y) = x3 − 3xy2 is harmonic on C.

Indeed, u is clearly C 2 and

∂u

∂x
= 3x2 − 3y2 ⇒

∂2u

∂x2
= 6x ,

∂u

∂y
= − 6xy ⇒

∂2u

∂y2
= − 6x ,







⇒ ∆u = 0.

Example 2

The function u(x , y) = arctan(y/x) is harmonic for x > 0.

In this case

∂u

∂x
=

−y/x2

1 + (y/x)2
=

−y

x2 + y2
⇒

∂2u

∂x2
=

2xy

(x2 + y2)2
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and

∂u

∂y
=

1/x

1 + (y/x)2
=

x

x2 + y2
⇒

∂2u

∂y2
=

−2xy

(x2 + y2)2
.

Thus ∆u = 0 and u is harmonic.

More generally we have the following result.

Theorem 1

Let Ω ⊂ C be a domain, f : Ω → C, u = Re f and v = Im f . If f is

analytic and u, v ∈ C 2(Ω), then u and v are harmonic on Ω.

Remarks.

1 The C 2 hypothesis is actually unnecessary. As we will see, if f
is analytic, then Re f and Im f are in fact C∞.

2 We will see that every harmonic function is (locally) the real
part of an analytic function.
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Proof. By the C-R equations and Clairaut’s theorem we have

∂2u

∂x2
=

∂

∂x

∂u

∂x
=

∂

∂x

∂v

∂y
=

∂

∂y

∂v

∂x
= −

∂2u

∂y2
,

which implies that ∆u = 0. Similarly, ∆v = 0.

Definition

Let Ω ⊂ R2 be a domain and let u : Ω → R be harmonic. We say
that v ∈ C 2(Ω) is a harmonic conjugate of u (on Ω) provided u

and v satisfy the C-R equations on Ω:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −

∂v

∂x
.

Equivalently, provided f = u + iv is analytic on Ω.
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Remarks.

1 If u is harmonic and v is a conjugate of u, then v is also
harmonic.

2 Being “a harmonic conjugate of” is not symmetric. One
cannot simply say that u and v are “harmonic conjugates of
one another.”

3 If v is a harmonic conjugate of u, then −u is a harmonic
conjugate of v : if f = u + iv is analytic, then so is
−if = v − iu.
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Example 3

Show that v = 3x2y − y3 is a harmonic conjugate of
u = x3 − 3xy2.

We simply notice that if f (z) = z3, then f is entire and by the
binomial theorem

f (x + iy) = (x + iy)3 = x3 + 3ix2y − 3xy2 − iy3

= (x3 − 3xy2)
︸ ︷︷ ︸

u

+i (3x2y − y3)
︸ ︷︷ ︸

v

.

Example 4

Find a harmonic conjugate for u = arctan(y/x), x > 0.

For x > 0, arctan(y/x) = Arg(x + iy). Let f (z) = Log z .
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Then −if (z) is analytic for x > 0 and is given by

−i Log z = − i(ln |z |+ i Arg z) = Arg z
︸ ︷︷ ︸

u

−i ln |z |.

Therefore a harmonic conjugate of u = Arg z is

v = − ln |z | = −
1

2
ln
(
x2 + y2

)
.

Harmonic conjugates are almost unique. To prove this we require a
preliminary result.

Lemma 1

Let Ω ⊂ C be a domain and f : Ω → C analytic. If the image of f

is contained in a line, then f is constant.
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Proof. Let u = Re f and v = Im f , and suppose f (Ω) is a subset of
the line

aX + bY = c , (a, b) 6= (0, 0).

Then au(x , y) + bv(x , y) = c for all (x , y) ∈ Ω. Differentiating
and applying the C-R equations we obtain

aux + bvx = 0,
auy + bvy = − avx + bux = 0,

}

⇒

(
ux vx
−vx ux

) (
a

b

)

=

(
0
0

)

,

throughout Ω. Because (a, b) 6= (0, 0),

0 = det

(
ux vx
−vx ux

)

= u2x + v2x = |f ′(z)|2 ⇒ f ′(z) = 0,

everywhere in Ω. As we have seen, this implies that f is constant.
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Theorem 2

Let Ω ⊂ R
2 be a domain and suppose u is harmonic on Ω. If v1

and v2 are harmonic conjugates of u on Ω, then there is an a ∈ R

so that v1 = v2 + a.

Proof. Let fj = u + ivj for j = 1, 2. Then f1, f2 are analytic on Ω.
Therefore f1 − f2 = i(v1 − v2) is analytic and purely imaginary on
Ω. By the lemma, f1 − f2 is constant. The result follows.

This addresses the uniqueness of harmonic conjugates. What
about existence?

Example 5

Does u = ln
(
x2 + y2

)
have a harmonic conjugate on C

×?
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Assume f = u + iv is analytic on C
×. Then so is f /2.

Notice that Re(f /2) = u/2 = ln |z | = Re (Log z) on C \ (−∞, 0].

Therefore both v/2 and Arg z are conjugates of u/2 on the slit
plane.

Thus Arg z = a + v/2 for some a ∈ R.

But a + v/2 extends continuously to C
×, whereas Arg z does not.

So u cannot have a conjugate on C
×.
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It turns out the problem in the preceding example is fact that C×

is multiply connected.

Theorem 3

Let Ω ⊂ C be a domain and let u : Ω → R be harmonic. If Ω is

simply connected, then u has a harmonic conjugate on Ω.

Sketch of Proof. Fix P0 ∈ Ω, let ω = −∂u
∂y

dx + ∂u
∂x

dy and for
P ∈ Ω define

v(P) =

∫ P

P0

ω,

where the integral is taken along any piecewise smooth curve in Ω
from P0 to P .

We first claim that v is well-defined, i.e. is path-independent.
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Let C1,C2 be paths in Ω from P0 to P . Then C1 − C2 is a loop in
Ω. Let R be the region enclosed by C1 − C2.

Because Ω is simply connected, R ⊂ Ω. Green’s theorem then
implies

∫

C1−C2

ω =

∫∫

R

dω =

∫∫

R

∂

∂x

(
∂u

∂x

)

−
∂

∂y

(

−
∂u

∂y

)

dA

=

∫∫

R

∆u dA = 0,

since u is harmonic. Thus
∫

C1

ω =

∫

C2

ω,

and v is well-defined.
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To differentiate v at P = (x , y) ∈ Ω, let P ′ = (x +∆x , y).

Let C be any path in Ω from P0 to P and let C ′ = C + L, where L

is the horizontal segment from P to P ′.

Then

vx(x , y) = lim
∆x→0

v(x +∆x , y)− v(x , y)

∆x
= lim

∆x→0

1

∆x

∫

L

ω

= lim
∆x→0

1

∆x

∫ ∆x

0

−uy(x + t, y) dt

= lim
∆x→0

−uy (x + h, y)

for some h ∈ [0,∆x ], by the Mean Value Theorem.

Since h → 0 as ∆x → 0, and uy is continuous, we find that

vx(x , y) = −uy (x , y).
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By instead using a vertical segment one can compute vy(x , y) in a
similar manner. The result is

vy (x , y) = ux(x , y).

Thus, v is a harmonic conjugate of u on Ω.

Remarks.

1 Using a different base point P1 yields a conjugate v1 that
differs from v by the additive constant

∫ P1

P0
ω.

2 Strictly speaking, Green’s theorem only applies to simple

closed curves, a hypothesis we cannot assume for C1 − C2.

3 A rigorous proof applies Green’s theorem locally, to
subdivisions of the homotopy between C1 and C2 in Ω.
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Corollary 1

Harmonic conjugates always exist locally.

Assuming the C∞ nature of analytic functions, we have the
following result as well.

Corollary 2

Let Ω ⊂ R
2 be a domain. If u ∈ C 2(Ω) and ∆u = 0 on Ω, then

u ∈ C∞(Ω).

Proof. Let P ∈ Ω. Choose an open disk D ⊂ Ω containing P .

Since D is simply connected and u is harmonic on D, there is an
analytic function f : D → C so that u = Re f .

It follows that u ∈ C∞(D). Since P ∈ Ω was arbitrary, we
conclude that u ∈ C∞(Ω).
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