Integration I A Review of Line Integrals

Ryan C. Daileda

Complex Variables

Paths

Definition

Let $P, Q \in \mathbb{R}^2$. A path from P to Q is a continuous function $\gamma : [a, b] \to \mathbb{R}^2$ satisfying $\gamma(a) = P$ and $\gamma(b) = Q$. A path γ is called *simple* if $s \neq t$ implies $\gamma(s) \neq \gamma(t)$.

Definition

A path from a point $P \in \mathbb{R}^2$ to itself is called a *loop*. A loop γ is called *simple* if $\gamma(s) \neq \gamma(t)$ unless s = t or $s, t \in \{a, b\}$.

- Loops are also called *closed paths*.
- **2** A loop can also be viewed as a continuous map $\gamma: S^1 \to \mathbb{R}^2$.
- The image of a path inherits an *orientation* from the linear ordering on [a, b].

Examples

Example 1

The line segment from P to Q is given by $\gamma(t) = (1 - t)P + tQ$ with $t \in [0, 1]$.

Example 2

The circle of radius R centered at $P_0 = (x_0, y_0)$ is given by $\gamma(t) = (x_0 + R \cos t, y_0 + R \sin t)$ with $t \in [0, 2\pi]$. This orients the circle counterclockwise.

Example 3

The path $\gamma(t) = (t \cos t, t \sin t)$ is a spiral, since in polar coordinates it is described by $r = t = \theta$.

Reparametrizations

Definition

A reparametrization of [a, b] is a strictly increasing continuous bijection $\phi : [\alpha, \beta] \rightarrow [a, b]$

Definition

If $\gamma : [a, b] \to \mathbb{R}^2$ is a path from P to Q, and ϕ is a reparametrization of [a, b], we call $\gamma \circ \phi$ a *reparametrization* of γ .

"Being a reparametrization of" is an equivalence relation on the set of paths from P to Q. So we identify a path with its reparametrizations.

All reparametrizations of $\boldsymbol{\gamma}$ have the same image with the same orientation.

Smooth Paths

Definition

A path $\gamma(t) = (x(t), y(t))$ is said to be of class C^k provided x(t) and y(t) are C^k functions.

Definition

A path $\gamma : [a, b] \to \mathbb{R}^2$ is *piecewise* C^k if there exist a partition $\pi = \{t_0 < t_1 < \cdots < t_n\}$ of [a, b] so that the restrictions $\gamma_j = \gamma|_{[t_{j-1}, t_j]}$ are C^k for $j = 1, 2, \dots, n$.

- Piecewise smoothness allows us to include (finitely many) discontinuities of the derivative(s) of a path (e.g. polygons).
- **2** Smoothness is preserved by *smooth* reparametrizations.

Tangent Vectors

Every path $\gamma : [a, b] \to \mathbb{R}^2$ is a curve (in the previous sense) on (a, b).

So, when $\gamma(t) = (x(t), y(t))$ is C^1 we have the *tangent vector* $\gamma'(t) = (x'(t), y'(t))$, given by

$$\gamma'(t) = \lim_{h \to 0} \frac{\gamma(t+h) - \gamma(t)}{h},$$

for a < t < b. The one-sided tangent vector at $\gamma'(a)$ is computed by instead taking $h \to 0^+$, while $\gamma'(b)$ uses $h \to 0^-$.

The orientation of the image of γ is determined by γ' .

Definition

A loop is said to be of class C^0 . In general, we say a loop γ is of class C^k provided γ' is a class C^{k-1} loop.

Line Integrals

Definition

Let $\Omega \subset \mathbb{R}^2$ be a domain. A *(differential)* 1-form on Ω is a formal linear combination $\omega = P \, dx + Q \, dy$, where $P, Q : \Omega \to \mathbb{R}$. We say ω is C^k provided $P, Q \in C^k(\Omega)$.

1-forms are also known as vector fields.

Definition

Let $\omega = P \, dx + Q \, dy$ be a continuous 1-form on a domain $\Omega \subset \mathbb{R}^2$ and let $\gamma : [a, b] \to \Omega$ be a C^1 path. We define the *line integral of* ω along γ to be

$$\int_{\gamma} \omega = \int_{a}^{b} P(\gamma(t)) x'(t) + Q(\gamma(t)) y'(t) dt,$$

where $\gamma(t) = (x(t), y(t))$.

Remarks

- To evaluate $\int P \, dx + Q \, dy$ we make the formal "substitutions" x = x(t), y = y(t), so that $dx = x'(t) \, dt, \, dy = y'(t) \, dt$.
- **2** If we let $\mathbf{F} = (P, Q)$ and $\mathbf{r} = (x, y)$, then

$$\int_{a}^{b} P(\gamma(t))x'(t) + Q(\gamma(t))y'(t) dt = \int_{a}^{b} \mathbf{F} \cdot \underline{\gamma'(t)} dt = \int_{\gamma} \mathbf{F} \cdot d\mathbf{r}$$
$$= \int_{a}^{b} \frac{\mathbf{F} \cdot \gamma'(t)}{|\gamma'(t)|} \underbrace{|\gamma'(t)|}_{ds = |d\mathbf{r}|} = \int_{\gamma} \operatorname{proj}_{\mathbf{T}} \mathbf{F} ds$$

where $\mathbf{T} = \gamma'(t)/|\gamma'(t)|$ is the unit tangent.

3 $ds = |d\mathbf{r}| = |\gamma'(t)| dt = \sqrt{x'(t)^2 + y'(t)^2} dt$ is called the arc length differential. The arc length of γ is $\int_{\gamma} ds = \int_{a}^{b} |\gamma'(t)| dt$.

Example 4

Compute $\int_{\gamma} \frac{-y \, dx + x \, dy}{x^2 + y^2}$, where γ is any circle centered at the origin, oriented counterclockwise.

Solution. We parametrize γ by

$$\gamma(t) = (R\cos t, R\sin t), \ t \in [0, 2\pi].$$

Then $dx = -R \sin t \, dt$, $dy = R \cos t \, dt$ and $x^2 + y^2 = R^2$. Thus

$$\int_{\gamma} \frac{-y \, dx + x \, dy}{x^2 + y^2} = \int_{0}^{2\pi} \frac{(-R \sin t)(-R \sin t) + (R \cos t)(R \cos t)}{R^2} \, dt$$
$$= \int_{0}^{2\pi} dt = \boxed{2\pi}.$$

Remark. It follows that if we orient the circle clockwise, we obtain -2π .

Definition

Let ω be a continuous 1-form of on a domain $\Omega \subset \mathbb{R}^2$ and let γ be a piecewise C^1 path in Ω , with C^1 partitions $\gamma_1, \gamma_2, \ldots, \gamma_n$. The *line integral of* ω *along* γ is defined to be

$$\int_{\gamma} \omega = \sum_{j=1}^{n} \int_{\gamma_j} \omega.$$

- One can argue that any refinement of a given C¹ partition does not affect the value of the integral.
- 2 As any two partitions always have a common refinement, the value of the integral is independent of the C^1 partition used.
- It is easy to see that $\int_{\gamma} \omega$ is invariant under a smooth reparametrization ϕ : just substitute $u = \phi(t)$.

Properties of Line Integrals

Linearity of the definite integral implies that if ω_1 and ω_2 are 1-forms and $\alpha, \beta \in \mathbb{R}$, then

$$\int_{\gamma} \alpha \omega_1 + \beta \omega_2 = \alpha \int_{\gamma} \omega_1 + \beta \int_{\gamma} \omega_2.$$

If $(-\gamma)(t) = \gamma(b-t)$ for $t \in [0, b-a]$ (the *opposite* path), then

$$\int_{-\gamma} \omega = -\int_{\gamma} \omega.$$

This follows upon making the substitution u = b - t in $\int_{-\gamma} \omega$.

Properties (Continued)

If $\gamma : [a, b] \to \mathbb{R}^2$ is a path from P to Q and $\kappa : [c, d] \to \mathbb{R}^2$ is a path from Q to R, then their *concatenation* is the path given by

$$(\gamma+\kappa)(t)=egin{cases} \gamma(a+t(b-a)) & ext{ for } t\in[0,1], \ \kappa(c+(t-1)(d-c)) & ext{ for } t\in[1,2]. \end{cases}$$

The concatenation of piecewise C^1 paths is again piecewise C^1 , and the definition of the integral immediately implies

$$\int_{\gamma+\kappa}\omega=\int_{\gamma}\omega+\int_{\kappa}\omega.$$

Derivatives of Forms

A real-valued function f(x, y) is called a *0-form*. The *(exterior) derivative* of a 0-form f is the 1-form

$$df = \frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy.$$

The (exterior) derivative of a 1-form $\omega = P dx + Q dy$ is the 2-form

$$d\omega = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA,$$

where dA = dx dy.

- The derivative of a 0-form is also known as the gradient.
- 2 The derivative of a 1-form is also called the *curl*.

The Fundamental Theorem of Calculus

Theorem 1 (FTOC for Line Integrals)

Let $\Omega \subset \mathbb{R}^2$ be a domain and let $f \in C^1(\Omega)$. For any $P, Q \in \Omega$ and any piecewise C^1 path γ in Ω from P to Q one has

$$\int_{\gamma} df = f(Q) - f(P).$$

Proof. We may assume $\gamma(t) = (x(t), y(t))$ is C^1 . The general result follows from a "telescoping" argument. The multivariate chain rule and single-variable FTOC then imply

$$\int_{\gamma} df = \int_{a}^{b} f_{x}(x(t), y(t))x'(t) + f_{y}(x(t), y(t))y'(t) dt$$
$$= \int_{a}^{b} \frac{d}{dt} f(\gamma(t)) dt = f(\gamma(b)) - f(\gamma(a)) = f(Q) - f(P).$$

Exact Forms and Path-Independence

Definition

A 1-form ω is called *exact* if $\omega = df$ for some 0-form f.

FTOC implies that line integrals of exact forms are *path-independent*.

In fact, path-independence characterizes exact 1-forms.

Theorem 2

Let $\Omega \subset \mathbb{R}^2$ be a domain and let ω be a C^0 1-form on Ω . The following are equivalent:

- 1. ω is exact.
- 2. $\int_{\gamma} \omega$ is path-independent in Ω , i.e. depends only on the endpoints of γ .
- 3. $\int_{\gamma} \omega = 0$ for all closed piecewise C_1 paths in Ω .

Sketch of Proof

<u>1. \Rightarrow 3.</u> Follows from FTOC.

<u>3.</u> \Rightarrow <u>2.</u> Let γ_1 , γ_2 be closed piecewise C^1 paths in Ω from P to Q. Then $\gamma = \gamma_1 - \gamma_2$ is closed, so that

$$0 = \int_{\gamma} \omega = \int_{\gamma_1} \omega - \int_{\gamma_2} \omega,$$

by hypothesis. Thus $\int_{\gamma_1} \omega = \int_{\gamma_2} \omega$.

<u>2.</u> ⇒ <u>1.</u> Fix $P_0 \in \Omega$ and for $P \in \Omega$ define $f(P) = \int_{P_0}^{P} \omega$, the integral being taken over any piecewise C^1 path in Ω from P_0 to P. This is well-defined by hypothesis.

One can compute f_x and f_y by an earlier argument, and concludes that $df = \omega$.

Closed and Exact Forms

Definition

A 1-form ω is called *closed* if $d\omega = 0$.

If $\Omega \subset \mathbb{R}^2$ is a domain and $f \in C^2(\Omega)$, then by Clairaut's theorem:

$$d^{2}f = d(df) = d\left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy\right) = \left(\frac{\partial^{2} f}{\partial x \partial y} - \frac{\partial^{2} f}{\partial y \partial x}\right) dA = 0.$$

Therefore:

Theorem 3

Every exact form is closed.

Remark: Not all closed forms on a domain Ω are exact (see below). The quotient space (closed 1-forms)/(exact 1-forms) is the *first de Rham cohomology group* of Ω .

A Non-Exact Closed 1-Form

Consider the 1-form

$$\omega = \frac{-y\,dx + x\,dy}{x^2 + y^2}$$

on $\mathbb{R}^2\setminus\{(0,0)\}.$ Its derivative is

$$d\omega = \left(\frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2}\right) + \frac{\partial}{\partial y} \left(\frac{y}{x^2 + y^2}\right)\right) dA$$
$$= \left(\frac{(x^2 + y^2) - 2x^2}{(x^2 + y^2)^2} + \frac{(x^2 + y^2) - 2y^2}{(x^2 + y^2)^2}\right) dA = 0,$$

so ω is closed. But as we have seen,

$$\int_{S^1} \omega = 2\pi \neq 0,$$

so that ω cannot be exact.