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Complex Differentials

Let f (z) be a complex-valued function defined on a domain Ω ⊂ C.

To define complex line integrals in Ω we first need to define the
complex 1-form f (z) dz .

Let u = Re f and v = Im f so that f = u + i v .

We define dz = dx + i dy and proceed formally:

f (z) dz = (u + i v)(dx + i dy) := (u dx − v dy) + i(v dx + u dy).

Given a path γ in Ω we therefore define

∫

γ

f (z) dz =

∫

γ

u dx − v dy + i

∫

γ

v dx + u dy . (1)
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Another Approach

If h(t) is a complex-valued function on an interval t ∈ [a, b], we
define

∫
b

a

h(t) dt =

∫
b

a

Re h(t) dt + i

∫
b

a

Im h(t) dt.

If a path is parametrized by γ(t), t ∈ [a, b], it is also natural to
make the formal substitution z = γ(t), dz = γ′(t) dt and define

∫

γ

f (z) dz =

∫
b

a

f (γ(t))γ′(t) dt. (2)

One can show that definitions (1) and (2) are equivalent.

Definition (1) is primarily of theoretical interest. Definition (2) is
usually used in practice.
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An Important Example

Example 1

Let z0 ∈ C. Evaluate

∫

C

dz

z − z0
, where C is the circle |z − z0| = r ,

oriented positively.

Solution. We parametrize C by γ(θ) = z0 + re iθ, θ ∈ [0, 2π].

Setting z = γ(θ), we have dz = γ′(θ) dθ = ire iθ dθ, so that

∫

C

dz

z − z0
=

∫ 2π

0

ire iθ dθ

(z0 + re iθ)− z0
=

∫ 2π

0
i dθ = 2πi .
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Another Example

Example 2

Evaluate
∫

C
z2 dz , where C is the line segment from i to 1.

Solution. We parametrize C as γ(t) = t + (1− t)i , t ∈ [0, 1].

If z = γ(t), then dz = 1− i dt so that

∫

C

z2 dz =

∫ 1

0
(t + (1− t)i)2(1− i) dt

=

∫ 1

0
−2t2 + 4t − 1 + i(1− 2t2) dt

=

∫ 1

0
−2t2 + 4t − 1 dt + i

∫ 1

0
1− 2t2 dt
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= −
2

3
t3 + 2t2 − t

∣
∣
∣
∣

1

0

+ i

(

t −
2

3
t3
∣
∣
∣
∣

1

0

)

=
1

3
+

i

3
=

1 + i

3
.

Remarks.

1 The first example will be relevant to our discussion of residues.

2 The second example can be explained by an appropriate
version of the Fundamental Theorem of Calculus.
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Properties of Complex Integrals

Let h(t), j(t) be complex-valued functions for t ∈ [a, b] and let
α, β ∈ C.

One can show directly from the definition (HW) that

∫
b

a

αh(t) + βj(t) dt = α

∫
b

a

h(t) dt + β

∫
b

a

j(t) dt,

i.e. the real-complex integral is linear.

It follows from (1) and (2) that complex line integrals are also
linear:

∫

γ

αf (z) + βg(z) dz = α

∫

γ

f (z) dz + β

∫

γ

g(z) dz .
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Definition (1) also implies that the integral is path-additive:

∫

γ1+γ2

f (z) dz =

∫

γ1

f (z) dz +

∫

γ2

f (z) dz ,

where γ1 + γ2 denotes the concatenation of γ1 and γ2.

And reversing directions negates the integral:

∫

−γ

f (z) dz = −

∫

γ

f (z) dz .

Moral. The complex line integral enjoys the usual properties of
line integrals of (real-valued) 1-forms.
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A Special Upper Bound

Recall that if h(t) is real-valued on [a, b], then we have the upper
bound ∣

∣
∣
∣

∫
b

a

h(t) dt

∣
∣
∣
∣
≤

∫
b

a

|h(t)|dt.

We will show the same result still holds if h(t) is complex-valued.

Lemma 1

Let h(t) be complex-valued on [a, b]. Then

∣
∣
∣
∣

∫
b

a

h(t) dt

∣
∣
∣
∣
≤

∫
b

a

|h(t)|dt.

We can use the linearity of the integral to continue to eschew the
use of Riemann sums in our proof.
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Proof of Lemma 1

Write

∫
b

a

h(t) dt = Re iφ with R ≥ 0. Then

R = ReR = Re

(

e−iφ

∫
b

a

h(t) dt

)

= Re

∫
b

a

e−iφh(t) dt =

∫
b

a

Re
(

e−iφh(t)
)

dt

≤

∫
b

a

∣
∣
∣e

−iφh(t)
∣
∣
∣ dt =

∫
b

a

|h(t)| dt,

which is what we needed to show.
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General Bounds

We will use Lemma 1 to prove the following fundamental upper
bounds on complex line integrals.

Theorem 1

Let Ω ⊂ C be a domain, f : Ω → C be continuous, and γ be a

piecewise C 1 path in Ω. Suppose |f | ≤ M on γ and let L be the

arc length of γ. We then have

∣
∣
∣
∣

∫

γ

f (z) dz

∣
∣
∣
∣
≤

∫

γ

|f (z)| |dz | ≤ ML.

Here |dz | = |dx + i dy | =
√

dx2 + dy2 = ds is the arc length

differential.

If z = γ(t) then dz = γ′(t) dt and |dz | = |γ′(t)| dt.
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Proof of Theorem 1

Because of path-linearity, it suffices to assume γ is parametrized by
γ(t), t ∈ [a, b].

By Lemma 1 we then have

∣
∣
∣
∣

∫

γ

f (z) dz

∣
∣
∣
∣
=

∣
∣
∣
∣

∫
b

a

f (γ(t)) γ′(t) dt

∣
∣
∣
∣
≤

∫
b

a

|f (γ(t))|
︸ ︷︷ ︸

|f (z)|

·
∣
∣γ′(t)

∣
∣ dt

︸ ︷︷ ︸

|dz |

≤

∫
b

a

M
∣
∣γ′(t)

∣
∣ dt = M

∫
b

a

∣
∣γ′(t)

∣
∣ dt

︸ ︷︷ ︸

|dz |=ds

= ML.

The result follows.
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Example

Here’s a typical application of the ML-estimate of Theorem 1.

Example 3

Use an ML-estimate to show that lim
r→∞

∫

Sr

z dz

z3 + 1
= 0, where Sr is

the semicircle |z | = r , Im z ≥ 0, oriented positively.

Solution. On Sr we have |z | = r and, provided r > 1,

|z3 + 1| ≥ |z |3 − 1 = r3 − 1 > 0.

Thus ∣
∣
∣
∣

z

z3 + 1

∣
∣
∣
∣
<

r

r3 − 1
= M

on Sr .
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Since L = πr is the length of Sr , Theorem 1 implies that

∣
∣
∣
∣

∫

Sr

z dz

z3 + 1

∣
∣
∣
∣
≤

r

r3 − 1
· πr =

πr2

r3 − 1
.

Calc. I implies that

πr2

r3 − 1
→ 0 as r → ∞.

So by the Squeeze Theorem from Calc I.,

lim
r→∞

∫

Sr

z dz

z3 + 1
= 0.
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