Integration II
 Green's Theorem

Ryan C. Daileda

Trinity University
Complex Variables

Last Time

We defined the integral of a 1-form (vector field) $\omega=P d x+Q d y$ along a smooth path $\gamma(t)=(x(t), y(t))$ with parameter domain [a, b] to be

$$
\int_{\gamma} \omega=\int_{a}^{b} P(\gamma(t)) x^{\prime}(t)+Q(\gamma(t)) y^{\prime}(t) d t
$$

and extended this definition to piecewise smooth paths additively.
According to FTOC, for any $f(x, y)$ and any path γ from P to Q :

$$
\int_{\gamma} d f=f(Q)-f(P)
$$

where $d f=f_{x} d x+f_{y} d y$ (the gradient).

Example

Example 1

Evaluate $\int_{\gamma}(x+y) d x+x y d y$, where γ is the boundary of the unit square $[0,1] \times[0,1]$, oriented counterclockwise.

Solution. We integrate along each edge separately, then add the results. Let $\omega=(x+y) d x+x y d y$.
$\underline{\gamma_{1}(y=0)}$: Here $d y=0$ so that

$$
\int_{\gamma_{1}} \omega=\int_{0}^{1} x d x=\frac{1}{2}
$$

$\underline{\gamma_{2}(x=1): ~ H e r e ~} d x=0$ so that

$$
\int_{\gamma_{2}} \omega=\int_{0}^{1} y d y=\frac{1}{2}
$$

$\underline{\gamma_{3}(y=1): ~ H e r e ~} d y=0$ so that

$$
\int_{\gamma_{3}} \omega=-\int_{0}^{1}(x+1) d x=-\frac{3}{2}
$$

$\gamma_{4}(x=0):$ Here $d x=0$ so that

$$
\int_{\gamma_{1}} \omega=\int_{0}^{1} 0 d y=0
$$

Thus

$$
\int_{\gamma} \omega=\frac{1}{2}+\frac{1}{2}-\frac{3}{2}+0=-\frac{1}{2} .
$$

Closed and Exact Forms

A 1-form $\omega=P d x+Q d y$ is called exact provided $\omega=d f=$ $f_{x} d x+f_{y} d y$ for some $f(x, y)$ (ω has an "antiderivative"). It is called closed provided $d \omega=\left(Q_{x}-P_{y}\right) d A=0$.
FTOC tells us:

- how to integrate exact 1-forms;
- integrals of exact 1-forms are path-independent.

We showed that path-independence classifies the exact 1-forms. Because $d^{2} f=0$ for all $f(x, y)$ (Clairaut's theorem), exact forms are closed. The converse is false in general, due to the connectivity of the domain of integration.
Green's theorem:

- generalizes FTOC to (possibly) inexact 1-forms;
- quantifies the failure of closed forms to be exact.

Green's Theorem

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain.
We say Ω has a piecewise C^{k} boundary provided the boundary $\partial \Omega$ is the union of finitely many simple closed piecewise C^{k} paths.

In this case we say $\partial \Omega$ is positively oriented if Ω is always to the left of (the tangent vector to) $\partial \Omega$.

Theorem 1 (Green's Theorem)

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with positively oriented piecewise C^{1} boundary $\partial \Omega$. If ω is a $C^{1} 1$-form on (a neighborhood of) $\Omega \cup \partial \Omega$, then

$$
\int_{\partial \Omega} \omega=\iint_{\Omega} d \omega
$$

Remarks

(1) Roughly speaking, the "outside edge" of Ω is oriented counterclockwise, while any "inner edges" or "holes" are oriented clockwise.
(2) Non-simple boundaries can be handled by subdividing and reorienting (if necessary).
(3) Using Green's theorem one can derive the formula

$$
A(\Omega)=\frac{1}{2} \int_{\partial \Omega}-y d x+x d y
$$

for the area of Ω in terms of its boundary.

Examples

Example 2

Use Green's theorem to reevaluate $\gamma(x+y) d x+x y d y$ along the positively oriented boundary of the unit square.

Solution. If $\omega=(x+y) d x+x y d y$, then $d \omega=(y-1) d A$. Thus

$$
\int_{\gamma} \omega=\int_{0}^{1} \int_{0}^{1} y-1 d x d y=\int_{0}^{1} y-1 d y=\frac{1}{2}-1=-\frac{1}{2}
$$

Example 3

Integrate $\omega=x^{2} d y$ around the boundary of the portion of the unit disk in the first quadrant.

Solution. We have $d \omega=2 x d A$ so that

$$
\int_{\partial \Omega} \omega=\iint_{\Omega} 2 x d A=\int_{0}^{\pi / 2} \int_{0}^{1} 2 r \cos \theta r d r d \theta
$$

$$
=\int_{0}^{\pi / 2} \cos \theta d \theta \int_{0}^{1} r^{2} d r=\left.\frac{1}{3} \sin \theta\right|_{0} ^{\pi / 2}=\frac{1}{3} .
$$

Example 4

Let γ be any simple closed piecewise C^{1} path enclosing the origin, oriented positively. Prove that $\int_{\gamma} \frac{-y d x+x d y}{x^{2}+y^{2}}=2 \pi$.

Solution. The function $\sqrt{x^{2}+y^{2}}$ is a continuous function on the compact set $\boldsymbol{C}=\gamma([a, b])$, so attains its absolute minimum value ϵ. Since $(0,0) \notin C, \epsilon>0$.

It follows that the disk $\sqrt{x^{2}+y^{2}}<\epsilon$ is contained within C. Let C^{\prime} denote the circle $x^{2}+y^{2}=(\epsilon / 2)^{2}$, oriented counterclockwise. Let Ω be the region between C and C^{\prime}.

Let $\omega=\frac{-y d x+x d y}{x^{2}+y^{2}}$. We have seen that $\int_{C^{\prime}} \omega=2 \pi$ and $d \omega=0$.
By Green's theorem

$$
0=\iint_{\Omega} 0 d A=\int_{\partial \Omega} \omega=\int_{\gamma} \omega-\int_{C^{\prime}} \omega .
$$

The result follows.
Similar reasoning can be used to show that if Ω has "holes," then the loop integral of any closed 1-form ω in Ω reduces to the sum of smaller loop integrals, one around each "hole." These are the periods of ω.

The periods of closed forms are precisely what prevents them from being exact!

Simply Connected Domains

A simply connected domain Ω is "hole-free."

Hence closed forms have no periods and therefore their loop integrals in Ω vanish.

It follows that every closed form is exact.

Theorem 2

Let $\Omega \subset \mathbb{R}^{2}$ be a simply connected domain. Then every closed C^{1} 1-form on Ω is exact.

This subsumes our earlier work with harmonic functions.

Harmonic Functions Revisited

Recall that $u \in C^{2}(\Omega)$ is harmonic provided $\Delta u=0$, and that v is a harmonic conjugate of u provided the C-R equations hold $\left(u_{x}=v_{y}, u_{y}=-v_{x}\right)$.
Given a harmonic u on Ω, the 1-form $\omega=-u_{y} d x+u_{x} d y$ is C^{1} and closed since

$$
d \omega=\left(\left(u_{x}\right)_{x}-\left(-u_{y}\right)_{y}\right) d A=\Delta u d A=0 .
$$

If Ω is simply connected, then ω must be exact, by Theorem 2 . So there is a $v \in C^{1}(\Omega)$ so that $d v=\omega$, i.e.

$$
v_{x} d x+v_{y} d y=-u_{y} d x+u_{x} d y \Rightarrow\left\{\begin{array}{l}
u_{x}=v_{y} \\
u_{y}=-v_{x}
\end{array}\right.
$$

so that v is a harmonic conjugate of u on Ω !

Now suppose Ω contains the open disk $\left\{\left|z-z_{0}\right|<R\right\}$ and u is harmonic on Ω. Let $0<r<R$.

Because $\omega=-u_{y} d x+u_{x} d y$ is closed, Green's theorem implies

$$
0=\iint_{\left|z-z_{0}\right| \leq r} 0 d A=\int_{\left|z-z_{0}\right|=r} \omega .
$$

Parametrize the circle by $\gamma(\theta)=z_{0}+r e^{i \theta}, \theta \in[0,2 \pi]$ to get

$$
\begin{aligned}
\int_{\left|z-z_{0}\right|=r} \omega & =\int_{0}^{2 \pi}-u_{y}(\gamma(\theta))(-r \sin \theta)+u_{x}(\gamma(\theta))(r \cos \theta) d \theta \\
& =r \int_{0}^{2 \pi} u_{x}(\gamma(\theta)) \cos \theta+u_{y}(\gamma(\theta)) \sin \theta d \theta \\
& =r \int_{0}^{2 \pi} \frac{\partial}{\partial r} u(\gamma(\theta)) d \theta=r \frac{\partial}{\partial r} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta
\end{aligned}
$$

We conclude that $\frac{\partial}{\partial r} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta=0$ so that

$$
\int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta=C
$$

for $0<r<R$.
To evaluate C let $r \rightarrow 0^{+}$:

$$
\begin{aligned}
C & =\lim _{r \rightarrow 0^{+}} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta=\int_{0}^{2 \pi} \lim _{r \rightarrow 0^{+}} u\left(z_{0}+r e^{i \theta}\right) d \theta \\
& =\int_{0}^{2 \pi} u\left(z_{0}\right) d \theta=2 \pi u\left(z_{0}\right)
\end{aligned}
$$

This proves that

$$
u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta
$$

Summary

Theorem 3

Let u be harmonic on a domain Ω containing the open disk $\left\{\left|z-z_{0}\right|<R\right\}$. Then u has the mean value property, namely

$$
u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta
$$

for $0<r<R$.

Remarks.

- The mean value property leads to the so-called Maximum Principle.
- The interchange of derivative and limit with the integral can be carefully justified.

Mean Value on a Circle

Given a path γ and a function $f(x, y)$, the mean value of f on γ is

$$
\frac{1}{\ell(\gamma)} \int_{\gamma} f d s
$$

where $d s=\left|\gamma^{\prime}(t)\right| d t$ and $\ell(\gamma)$ is the arc length of γ.
If $\gamma(\theta)=z_{0}+r e^{i \theta}, \theta \in[0,2 \pi]$, then $\gamma^{\prime}(\theta)=i r e^{i \theta}$ and $d s=r d \theta$.
So the average value of $f(x, y)$ on the circle $\left|z-z_{0}\right|=r$ is

$$
\frac{1}{2 \pi r} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) r d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta
$$

The mean value property therefore states that the value of a harmonic function at a point z_{0} is equal to the average of its values on any circle centered at z_{0}.

