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Zeros

As with polynomials, analytic functions can have “repeated roots,”
and these are detected using derivatives.

Let f be analytic at z0. We say that f has a zero at z0 if f (z0) = 0.

We say a zero z0 has order m ∈ N if

f (k)(z0) = 0 for 0 ≤ k ≤ m − 1, and f (m)(z0) 6= 0.

A zero of order 1 is called simple. Zeros of higher order are called
double, triple, etc.

We say a zero z0 has infinite order if

f (k)(z0) = 0 for all k ≥ 0.
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Examples

Example 1

Show that the zeros of f (z) = sin z are all simple.

Solution. The zeros of sin z are z0 = nπ, n ∈ Z.

Since f ′(z) = cos z and cos nπ = ±1 6= 0, every zero is simple.

Example 2

Show that f (z) = cos z − ez + z has a double zero at z0 = 0.

Solution. We have f (0) = cos 0− e0 + 0 = 0,
f ′(0) = − sin 0− e0 + 1 = 0 and f ′′(0) = − cos 0− e0 = −2.

Since −2 6= 0, the result follows.
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Zeros of Infinite Order

Our first task is to show that zeros of infinite order aren’t very
interesting.

Theorem 1

Let f be analytic on a domain Ω. If f has a zero of infinite order

at z0 ∈ Ω, then f ≡ 0.

Proof. Let Z = {z0 ∈ Ω | f has an infinite order zero at z0}.

We will show that Z is clopen in Ω. Consequently, if Z 6= ∅, then
Z = Ω, and the result follows.

Let Zk = {z0 ∈ Ω | f (k)(z0) = 0}. Then Zk is closed and so

Z =
⋂

k∈N0

Zk is closed.
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Let z0 ∈ Z . We know that f agrees with its Taylor series on an
open disk D centered at z0:

f (z) =

∞∑

k=0

f (k)(z0)

k!
(z − z0)

k =

∞∑

k=0

0

k!
(z − z0)

k = 0 on D.

Since f ≡ 0 on D, D ⊂ Z .

This proves Z is open, and completes the proof.

Corollary 1

A nonconstant analytic function on a domain Ω only has zeros of

finite order in Ω.
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Zeros of Finite Order

Suppose f is analytic on a domain Ω with a zero of finite order m
at z0 ∈ Ω. Then on an open disk D ⊂ Ω centered at z0 one has

f (z) =

∞∑

k=0

f (k)(z0)

k!
(z − z0)

k =

∞∑

k=m

f (k)(z0)

k!
(z − z0)

k

= (z − z0)
m

∞∑

k=m

f (k)(z0)

k!
(z − z0)

k−m

= (z − z0)
m (b0 + b1(z − z0) + b2(z − z0)

2 + · · · )︸ ︷︷ ︸
g(z)

,

where g(z0) = b0 = f (m)(z0)/m! 6= 0. The function g(z) is
analytic on D (it’s given by a convergent PS).
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The function f (z)/(z − z0)
m is analytic on Ω \ {z0}, and agrees

with g on D \ {z0}.

It follows that g extends to be analytic throughout Ω, and satisfies
f (z) = (z − z0)

mg(z) there. All together this proves half of:

Theorem 2

Let f be analytic on a domain Ω. Then f has a zero of order m at

z0 ∈ Ω if and only if f (z) = (z − z0)
mg(z), where g is analytic on

Ω and satisfies g(z0) 6= 0.

Proof. The converse direction follows from direct computation
(induction), or from substitution of the Taylor expansion of g at
z0.
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Remarks

1 Theorem 2 says that we can “factor out” the zeros of an
analytic function in the same way we can with polynomials.

2 Theorem 2 also says that if f (z) has an order m zero at z0,
then g(z) = f (z)/(z − z0)

m can be analytically continued to
z0, i.e. the singularity at z0 is removable.

Example 3

Because f (z) = sin z has a simple zero at z0 = 0, the function
sinc z = sin z

z
can be analytically continued to z0 = 0. In fact

sinc z =
1

z

(
z −

z3

3!
+

z5

5!
+ · · ·

)
= 1−

z2

3!
+

z4

5!
+ · · ·

for all z ∈ C. In particular, sinc(0) = 1.
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Isolation of Zeros

An immediate consequence of the factorization property of zeros is:

Corollary 2

Let f be a nonconstant analytic on a domain Ω. Then the zeros of

f in Ω are isolated.

Proof.Suppose z0 ∈ Ω is a zero of f .

Because f is nonconstant, f has finite order m at z0.

Write f (z) = (z − z0)
mg(z) with g analytic on Ω and g(z0) 6= 0.

Because g is continuous and nonzero at z0, there is an open disk
D at z0 for which g(z) 6= 0 for all z ∈ D.

Then f vanishes only at z0 in D. So z0 is isolated by D.
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Identity Principle

Another immediate consequence is the:

Theorem 3 (Identity Principle)

Let f and g be analytic on a domain Ω and let E ⊂ Ω. If
f |E = g |E and E contains a limit point z0 ∈ E, then f ≡ g.

Proof. The function h = f − g is analytic on Ω, vanishes on E ,
and has a nonisolated zero at z0.

Thus h ≡ 0 by (the contrapositive of) Corollary 2, and hence
f ≡ g .
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Example

Example 4

Prove that f (x + iy) = ex (cos y + i sin y) is the only possible
analytic extension of ex from R to C.

Solution. We know that f (z) = ez is entire and satisfies f (x) = ex

for x ∈ R.

Suppose that g(z) is also entire and satisfies g(x) = ex for x ∈ R.

Then g(x) = f (x) for all x ∈ R.

Since R has limit points, the Identity Principle implies g ≡ f .
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Example

One can easily verify that ez = ez . This is a consequence of the
following general principle.

Theorem 4 (Reflection Principle)

Suppose f is entire and f (R) ⊂ R. Then f (z) = f (z) for all z ∈ C.

Proof. We have seen that g(z) = f (z) is analytic if f (z) is.

If x ∈ R, then

g(x)− f (x) = f (x)− f (x) = f (x)− f (x) = f (x)− f (x) = 0,

since f (x) is real.

So g |R = f |R, and hence g ≡ f by the Identity Principle.
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Analytic Continuation

Definition

Let Ω ⊂ Ω′ be domains. Suppose f is analytic on Ω. We say that
f̂ is an analytic continuation of f (to Ω′) provided f̂ is analytic on
Ω′ and satisfies f̂ |Ω ≡ f .

The remarkable fact about analytic continuations is that, when
they exist, they are unique.

Theorem 5 (Uniqueness of Analytic Continuation)

Let Ω ⊂ Ω′ be domains and suppose f is analytic on Ω. If f has an

analytic continuation to Ω′, then it is unique.

Proof. Suppose f̂ : Ω′ → C and f̃ : Ω′ → C are both analytic
continuations of f to Ω′.
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Then f̂ |Ω ≡ f ≡ f̃ |Ω.

Because Ω is nonempty and open, it has limit points.

The Identity Principle implies f̂ ≡ f̃ .

The formulae defining analytic functions frequently have natural
limitations on their domains, despite the fact that the functions
themselves may have larger domains.

Power series are an example of this phenomenon.

Uniqueness of Analytic Continuation ensures that no matter how
we choose to extend a given formula for an analytic function, the
resulting extension will always be the same.
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The Riemann Zeta Function

The Riemann zeta function is defined by

ζ(z) =

∞∑

n=1

1

nz
. (1)

Because

nz = ez ln n = ex ln ne iy ln n = nxe iy ln n ⇒ |nz | = nx ,

for x ≥ x0 > 1 one has
∣∣∣∣
1

nz

∣∣∣∣ =
1

nx
≤

1

nx0
.

Since
∑

1/nx0 converges, the M-test implies (1) converges
absolutely and uniformly on x ≥ x0.
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It follows that (1) converges absolutely and normally on x > 1.

Therefore ζ(z) is an analytic function on x > 1.

We will extend ζ(z) to {x > 0} \ {1}. For any N ∈ N consider the
partial sum

N∑

n=1

1

nz
=

N∑

n=1

(
n − (n − 1)

)
n−z =

N∑

n=1

n · n−z −

N∑

n=1

(n − 1)n−z

=
N∑

n=1

n · n−z −
N−1∑

n=0

n(n + 1)−z

= N1−z −

N−1∑

n=1

n
(
(n + 1)−z − n−z

)
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= N1−z −
N−1∑

n=1

n

∫ n+1

n

−zt−z−1 dt = N1−z + z

N−1∑

n=1

∫ n+1

n

[t]t−z−1 dt

= N1−z + z

∫ N

1
[t]t−z−1 dt = N1−z + z

∫ N

1
([t]− t︸ ︷︷ ︸

{t}

+t)t−z−1 dt

= N1−z − z

∫ N

1
{t}t−z−1 dt + z

∫ N

1
t−z dt

= N1−z − z

∫ N

1
{t}t−z−1 dt + z

t1−z

1− z

∣∣∣∣
N

1

= N1−z

(
1 +

z

1− z

)
+

z

z − 1
− z

∫ N

1
{t}t−z−1 dt.
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Since |N1−z | = N1−x , for x > 1, N1−z → 0 as N → ∞.

Letting N → ∞ above we therefore obtain

ζ(z) =

∞∑

n=1

1

nz
=

z

z − 1
− z

∫ ∞

1
{t}t−z−1 dt, (2)

for x > 1. Because 0 ≤ {t} < 1 and |t−z−1| = t−x−1, the integral
actually converges (absolutely) for x > 0!

Since h(t, z) = {t}t−z−1 is analytic in z , we can use Morera’s and
Fubini’s theorems to show the integral is analytic in z for x > 0.

Thererfore (2) provides the (unique) analytic continuation of ζ(z)
to {x > 0} \ {1}!
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