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9. Evaluate / V/zdz, where 7 is the upper half of the unit circle: first, directly,
Jy

and second, using the Fundamental Theorem 2.1.7.
10.* Evaluate / V 22 — 1dz, where 7 is a circle of radius % centered at 0.
v

11. Evaluate

/ 222 — 152+ 30

- 102232z - 32

where v is the circle |z| = 3. Hint: Use partial fractions; one root of the
denominator is z = 2.

2.3 A Closer Look at Cauchy’s Theorem

In this section we take another look at some of the issues that were treated in-
formally in the previous section. The strategy is to start by carefully examining
Cauchy’s Theorem for a rectangle and then to use the theorem in this special case,
together with subdivision arguments, to build up to more general regions in a sys-
tematic way.

Recall that the basic theme of Cauchy’s Theorem is that if a function is analytic
everywhere inside a closed contour, then its integral around that contour must be
0. The principal goal of this section is to give a proof of a form of the theorem
known as a homotopy version of Cauchy’s Theorem. This approach extends and
sharpens the idea presented in the preceding section of the continuous deformation
of a curve. The primary objective will be the precise formulation and proof of
deformation theorems which say, roughly, that if a curve is continuously deformed
through a region in which a function is analytic, then the integral along the curve
does not change. The reader will also notice that in this section references are made
not to “simple closed curves” but only to “closed curves.”

Cauchy’s Theorem for a Rectangle We begin with a careful statement of
Cauchy’s Theorem in this case.

Theorem 2.3.1 (Cauchy’s Theorem for a Rectangle) Suppose R is a rectan-
gular path with sides parallel to the axzes and that f is a function defined and analytic
on an open set G containing R and its interior. Then | rf=0.

There are several methods to prove Cauchy’s Theorem for a rectangle. One way,
which fits the spirit of the previous section, is to prove a strong version of Green’s
Theorem for rectangles?. Another technique, the one that we follow, is a bisection
technique due to Edouard Goursat in 1884. It was Goursat® who first noticed that

4F. Acker, The missing link, Mathematical Intelligencer, 18 (1996), 4-9.
5 Acta Mathematica, 4 (1884), 197-200 and Transactions of the American Mathematical Soci-
ety, 1 (1900), 14-16.
/
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one does not need to assume that the derivative of f is continuous. Surprisingly.
this follows automatically, which is a rather different situation than that for real
functions of several variables.

Besides these techniques, there have been many other proofs of Cauchy’s The-
orem. For example, Pringsheim® uses triangles rather than rectangles, which has
some advantages. Cauchy’s original proof (for which the assumptions of continuity
of the derivative were not made clear), had the content of Green’s Theorem im-
plicit in the argument—in fact Green did not formulate Green’s Theorem as such
until about 1830, whereas Cauchy presented his theorem in 1825.7 There are also
interesting proofs based on “homology” given by Ahlfors.®

Local Version of Cauchy’s Theorem Before proving Cauchy’s Theorem for
a rectangle, we indicate how it can already be used to prove a limited but still
important and more general case of Cauchy’s Theorem.

Theorem 2.3.2 (Cauchy’s Theorem for a Disk) Suppose that f : D — C is
analytic on a disk D = D(z; p) C C. Then

(i) f has an antiderivative on D; that is, there is a function F': D — C that is
analytic on D and that satisfies F'(z) = f(z) for all z in D.

(ii) If T is any closed curve in D, then [, f = 0.

From the discussion in §2.1 on the path independence of integrals (see Theorem
2.1.9), we know that (i) and (ii) are equivalent in the sense that whichever we
establish first, the other will follow readily from it. Our problem is how to obtain
either one of them. In the proof of the Path Independence Theorem 2.1.9, it was
shown that (ii) follows easily from (i), and the construction of an antiderivative
to get (i) was facilitated by the path independence of integrals. The strategy for
proceeding is quite interesting.

1. Prove (ii) directly for the very special case in which I' is the boundary of a
rectangle.

2. Show that this limited version of path independence is enough to carry out
a construction of an antiderivative similar to that in the proof of the Path
Independence Theorem.

3. With (i) thus established, part (ii) in its full generality follows as in the Path
Independence Theorem.

6 Transactions of the American Mathematical Society, 2 (1902)
"In his Mémoire sur les intégrales définies prises entre des limites imaginaires.
8L. Ahlfors, Complex Analysis, Second Edition (New York: McGraw-Hill, 1966).
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Proof of Cauchy’s Theorem for a Rectangle A subtle technical point worth
repeating: Care must be taken because we do not know in advance that the deriva-
tive of f is continuous. In fact, we will use Cauchy’s Theorem itself to eventually
prove that f’ is automatically continuous. Now let’s get down to the proof.

Let P be the perimeter of R and A the length of its diagonal. Divide the
rectangle R into four congruent smaller rectangles R, R, R®) and RW. If
each is oriented in the counterclockwise direction, then cancellation along common

edges leaves
[r=[ s+ s4f 1+[ 1
R R(1) JR(2) R(3) J R(4)

/Rf /R(l) f’ K ./R(Z) f‘ * /[{(3) f’ T /

R
there must be at least one of the rectangles for which | [, f| > 3l g f1. Call this
subrectangle R;. Notice that the perimeter and diagonal of R, are half those of R
(Figure 2.3.1).

Since

=

f

)

y

Figure 2.3.1: Bisection procedure.

Now repeat this bisection process, obtaining a sequence Ry, Ry, R3, ... of smaller
and smaller rectangles that have the following properties:

1 1
g |[[ dz5[ Azezg|ff
( ) /1;’.1. l 4 Ry 4" | Jr
.. . 1 . P
(ii) Perimeter(R,,) = o perimeter(R) = o
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A
(iii) Diagonal(R,) = —21; diagonal(R) = on (see Figure 2.3.2)

Figure 2.3.2: Goursat’s repeated bisection process for the proof of Cauchy’s Theo-
rem for a rectangle.

Since these rectangles are nested one within another and have diagonals tending
to 0, they must shrink down to a single point wg. To be precise, let z;, be the upper
left-hand corner of R,. If m > n, then |z, — z»| < diagonal (R,) = A/2", and
thus {2, } forms a Cauchy sequence that must converge to some point wp. If z is
any point on the rectangle R,,, then since all 2, with k > n are within R,,, z can be
no farther from wp than the length of the diagonal of R,,. That is, |z —wo| < A J2"
for z in R,,.

From (i) we see that | [ f| < 4" if r, |. To obtain a sufficiently good estimate
on the right side of this inequality, we use the differentiability of f at the point wy.

For € > 0, there is a number § > 0 such that

f(z) = f(wo)

em—— f(wo)| <€

whenever |z — wg| < 8. If we choose n large enough that A/2" is less than 4, then

£(2) = ) = (= — o) (wo)] < elz = wo] < ez




§2.3 A Closer Look at Cauchy’s Theorem 127

for all points z on the rectangle R,. Furthermore, by the Path Independence
Theorem 2.1.9,

/ 1dz=0 and / (z —wp)dz = 0.
R,l n

Since z is an antiderivative for 1, (z — wo)?/2 is an antiderivative for (z — wo), and
the path R, is closed. Thus,

Jol = el

- 4’ﬁmﬂ@a—fwwL%mZ—fmwA;u—www

< 4| 17~ fwo) = (== wo)f (wo)ldz
< 47L/ |£(2) = f(wo) — (2 — wo) ' (wo)] |dz|
< 4" (;—%) - perimeter (R,,)

< €eAP.

Since this is true for every € > 0, we must have | [, f| = 0 and so Jpf=0,as
desired. W

Back to Cauchy’s Theorem on a Disk For most of the rest of this section,
“curve” means “piecewise C'! curve.” However, at one point in the technical devel-
opment it will become important to drop this piecewise C'" restriction and consider
continuous curves.’

We can now carry out the second step of the proof of Cauchy’s Theorem for a
disk (Theorem 2.3.2). Since the function f is analytic on the disk D = D(zo;p),
the result for a rectangle just proved shows that the integral of f is 0 around any
rectangle in D. This is enough to carry out a construction of an antiderivative for
f very much like that done in the proof of the Path Independence Theorem 2.1.9
and thus to establish part (i) of the theorem.

We will again define the antiderivative F’ (z) as an integral from 2 to zo. However,
we do not yet know that such an integral is path independent. Instead we will
specify a particular choice of path and use the new information available—the
analyticity of f and the geometry of the situation together with the rectangular
case of Cauchy’s Theorem—to show that we get an antiderivative. For the duration
of this proof we will use the notation ({a, b)) to denote the polygonal path proceeding
from a point @ to a point b in two segments, first parallel to the x axis, then parallel
to the y axis, as in Figure 2.3.3.

9The teghnical treatment of integration over continuous curves is given in the Internet Supple-
ment.
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Figure 2.3.3: The path ((a,b)).

If the point bis in a disk D(a; §) centered at a, then the path ((a, b)) is contained
in that disk. Thus, for z € D, we may define a function F'(z) by

F(z) = /« | Je

We want to show that F’(z) = f(z). To do this we need to show that

fiy o E00) —F(Z)

w—2z Wi==:2

= f(2):

Fixing z € D and € > 0, we use the fact that D is open and f is continuous on D to
choose & > 0 small enough that D(z;6) C D and |f(z) — f(€)| < € for £ € D(z;9).
If w € D(z;6), then the path ((z,w)) is contained in D(z;6) and hence in D. The
paths ((zo, 2)) and ({29, w)) are also contained in D, and these three paths fit together
in a nice way with a rectangular path R also contained in D and having one corner
at z; see Figure 2.3.4. We can write, for the two cases in Figure 2.3.4,

‘ = g + it = de.
[ e [ o [ see= s

By the Cauchy theorem for a rectangle, [, f(£§)d€ = 0, so the preceding equation
becomes

F(z)+ /«z’w» f(&)dé = F(w).

Neither side of the right triangle defined by ((z,w)) can be any longer than its
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Figure 2.3.4: Two possible configurations for R, 2o, 2, and w.

hypotenuse, which has length [z — wl, so length({(z,w))) < 2|z — w|, and thus

F(w) — F(z) o g
EO-FE s = | SO - s@w-2)
.
= _— d — z ld
e /«w» F(e)de - 1( >'/« NG
1
- oo /«:‘w»mo ~ f(2))de
1
< B /« GRS
= Zte length({(z, w))) < P €- 2w — z| = 2e.
Thus,
= T =10

and therefore F'(z) = f(z), as desired. This establishes part (i) of the theorem.
Since f has an antiderivative defined everywhere on D and 7 is a closed curve in
D, we have f~, f = 0 by the Path Independence Theorem 2.1.9. This establishes

part (i) of the theorem and so the proof of Cauchy’s Theorem in a disk (Theorem
2.3.2) is now complete. W

Deleted Neighborhoods For technical reasons that will be apparent in §2.4, it
will be useful to have the following variant of Cauchy’s Theorem for a rectangle.

Lemma 2.3.3 Suppose that R is a rectangular path with sides parallel to the azes,
that f is a function defined on an open set G containing R and its interior, and



