Complex nth Roots

R. C. Daileda

1 Roots of Unity

For $n \in \mathbb{N}$, the complex solutions of the equation $z^n = 1$ are called the *n*th roots of unity. We let μ_n denote the set of *n*th roots of unity in \mathbb{C} . Note that we always have $1 \in \mu_n$ so that $|\mu_n| \ge 1$. On the other hand, because the *n*th roots of unity are the roots of the degree *n* polynomial $X^n - 1$, and \mathbb{C} is a field, $|\mu_n| \le n$. We will prove that, in fact, $|\mu_n| = n$. That is, $z^n = 1$ has exactly *n* solutions in \mathbb{C} .

We begin with some convenient notation. For $z_1, z_2, a \in \mathbb{C}$, we say z_1 is congruent to z_2 modulo a, and write $z_1 \equiv z_2 \pmod{a}$, whenever $z_1 - z_2 \in a\mathbb{Z}$, or equivalently when $z_1 = z_2 + na$ for some $n \in \mathbb{Z}$. It is easy to check that congruence modulo a is an equivalence relation, and that if $z_1 \equiv z_2 \pmod{a}$, then $wz_1 \equiv wz_2 \pmod{a}$ for all $w \in \mathbb{C}$.¹

The complex numbers of modulus 1 are those with polar representation $e^{i\theta}$, $\theta \in \mathbb{R}$. Because θ represents the argument of $e^{i\theta}$, we immediately conclude that $e^{i\theta_1} = e^{i\theta_2}$ if and only if θ_1 and θ_2 differ by a multiple of 2π , i.e. $\theta_1 \equiv \theta_2 \pmod{2\pi}$. In particular, $e^{i\theta} = 1 = e^{i0}$ if and only if $\theta \equiv 0 \pmod{2\pi}$.

Now let's compute μ_n . Write $z = re^{i\theta}$ with r > 0 and $\theta \in \mathbb{R}$. Then

$$z^{n} = 1 \iff r^{n}e^{in\theta} = 1 \iff \begin{cases} r^{n} = 1 \\ \text{and} \\ n\theta \equiv 0 \pmod{2\pi} \end{cases} \iff \begin{cases} r = 1 \\ \text{and} \\ \theta \equiv 0 \pmod{\frac{2\pi}{n}} \end{cases} \iff \begin{cases} r = 1 \\ \text{and} \\ \theta = \frac{2\pi j}{n}, j \in \mathbb{Z} \end{cases}.$$

Thus the solutions to $z^n = 1$ are precisely $z = e^{2\pi i j/n}$ for $j \in \mathbb{Z}$. Since we know there can be no more than n solutions, there are necessarily redundancies in this list. Indeed, we have

$$e^{2\pi i j/n} = e^{2\pi i k/n} \iff \frac{2\pi j}{n} \equiv \frac{2\pi k}{n} \pmod{2\pi} \iff j \equiv k \pmod{n}.$$

It follows that there are exactly *n* distinct solutions, one for each congruence class modulo *n*. Choosing the standard remainder representatives for *j*, we arrive at the complete list of (distinct) solutions to $z^n = 1$ in \mathbb{C} :

$$\mu_n = \{ e^{2\pi i j/n} \, | \, j = 0, 1, 2, \dots, n-1 \}.$$

Notice that if we let $\omega = e^{2\pi i/n}$, then $e^{2\pi i j/n} = \omega^j$. We therefore can also write

$$\mu_n = \{1, \omega, \omega^2, \dots, \omega^{n-1}\}.$$

Let's summarize.

Theorem 1. For $n \in \mathbb{N}$, $|\mu_n| = n$. In particular,

$$\mu_n = \{ e^{2\pi i j/n} \, | \, j = 0, 1, 2, \dots, n-1 \} \tag{1}$$

$$=\{1,\omega,\omega^2,\ldots,\omega^{n-1}\},\tag{2}$$

where $\omega = e^{2\pi i/n}$.

 $¹ z_1 \equiv z_2 \pmod{a}$ if and only if z_1 and z_2 map (under the canonical surjection) to the same coset in the quotient group $\mathbb{C}/a\mathbb{Z}$.

Remarks.

- 1. Equation (1) shows that, geometrically speaking, the elements of μ_n form the vertices of a regular *n*-gon on the unit circle.
- 2. The reader will readily verify that μ_n is a subgroup of \mathbb{C}^{\times} . The description (2) shows that μ_n is actually a *cyclic* group² of order *n*, and so is isomorphic to $\mathbb{Z}/n\mathbb{Z}$.

2 General *nth* Roots

The *n*th roots of $a \in \mathbb{C}^{\times}$ are the complex solutions of the equation $z^n = a$. Writing $z = re^{i\theta}$ and $a = Re^{i\phi}$ (r, R > 0), we immediately find that $z^n = a$ if and only if $r^n = R$ and $n\theta \equiv \phi \pmod{2\pi}$. Rewriting these conditions as $r = \sqrt[n]{R}$ and $\theta \equiv \frac{\phi}{n} \pmod{\frac{2\pi}{n}}$, we find that a particular *n*th root of a is $\alpha = \sqrt[n]{R}e^{i\phi/n}$. The following theorem tells us that every other *n*th root differs from α by a factor in μ_n .

Theorem 2. Let $n \in \mathbb{N}$ and $a \in \mathbb{C}^{\times}$. Then a has exactly n nth roots in \mathbb{C} , which are the members of the set

$$\alpha \mu_n = \{ \alpha, \alpha \omega, \alpha \omega^2, \dots, \alpha \omega^{n-1} \}, \tag{3}$$

with $\alpha = \sqrt[n]{|a|} e^{i \frac{\operatorname{Arg} a}{n}}$.

Proof. Let A denote the set of nth roots of A. Suppose that $z = \alpha \zeta$ with $\zeta \in \mu_n$. Then

$$z^n = \alpha^n \zeta^n = a \cdot 1 = a,$$

so that $z \in A$. Thus $\alpha \mu_n \subset A$. Conversely, if $z \in A$ is an *n*th root of a, let $\zeta = z/\alpha$. Then $z = \alpha \zeta$ and

$$\zeta^n = \frac{z^n}{\alpha^n} = \frac{a}{a} = 1$$

so that $\zeta \in \mu_n$. Hence $z \in \alpha \mu_n$ and $A \subset \alpha \mu_n$. This is enough to establish our result.

Remarks.

- 3. Because the effect of multiplication by a complex number z is scaling by |z| and (positive) rotation by $\arg z$, equation (3) shows that the *n*th roots of a also form the vertices of a regular *n*-gon, with radius $\sqrt[n]{|a|}$.
- 4. The conclusion of Theorem 2 still holds if α is replaced by any nth root of a, by the same proof.
- 5. The *n*th power map $P_n : \mathbb{C}^{\times} \to \mathbb{C}^{\times}$, given by $P_n(z) = z^n$, is a homomorphism with ker $P_n = \mu_n$. The paragraph preceding the statement Theorem 2 proves that P_n is surjective, and Theorem 1 shows that ker $P_n = \{1, \omega, \omega^2, \ldots, \omega^{n-1}\}$. Theorem 2 is then just a restatement of the fact that the fiber over a point under a homomorphism is just a coset of the kernel.

3 Root Functions

The preceding section shows that in order to define $\sqrt[n]{z}$ as a *function* on \mathbb{C}^{\times} , a particular choice of *n*th roots needs to be made for each $z \in \mathbb{C}$. A similar situation occurs when working with real square roots, where one declares that for $x \in \mathbb{R}^+$, \sqrt{x} denotes the *positive* square root of x. But rather than (directly) restricting the codomain in this manner in order to make $\sqrt[n]{z}$ a function, we will restrict the domain.

²This also follows from a much deeper result on finite multiplicative subgroups of fields.

In the course of proving Theorem 2 we were led to the relationship $\theta \equiv \frac{\phi}{n} \pmod{\frac{2\pi}{n}}$ between the arguments ϕ and θ of z and its nth roots, respectively. Because $2\pi\mathbb{Z}$ is a proper subgroup of $\frac{2\pi}{n}\mathbb{Z}$ (for $n \geq 2$), this congruence does not uniquely determine a single argument. This ambiguity is the source of the multi-valued nature of the nth root. However, as we've seen, if we simply replace the congruence by an equality we produce a single nth root. This, however, isn't sufficient to uniquely determine a *specific* nth root unless we also specify the value of ϕ , i.e. the argument of z.

Therefore, for $z \in \mathbb{C}^{\times}$ we define the *principal branch* of $\sqrt[n]{z}$ by

$$\sqrt[n]{z} = \sqrt[n]{|z|} e^{i\frac{\operatorname{Arg} z}{n}}.$$

If $\omega = e^{2\pi i/n}$, the functions

$$f_j(z) = \omega^j \sqrt[n]{z}, \ j = 1, 2, \dots, n-1$$

also define branches of the *n*th root function. Together with $\sqrt[n]{z}$, the values of these functions at a fixed z yield the *n* distinct *n*th roots of z.

Example. Let $z = re^{i\theta} \in \mathbb{C}^{\times}$. If $\theta \in (-\pi, \pi]$, then $\theta/2 \in (-\pi/2, \pi/2]$. In particular, $\cos \theta/2 \ge 0$. It follows from the half-angle formula for cosine that

$$\cos\frac{\theta}{2} = \sqrt{\frac{1+\cos\theta}{2}}.$$

Because θ and $\theta/2$ have the same sign, $\sin \theta$ and $\sin \theta/2$ also have the same sign. Therefore the half-angle formula for sine yields

$$\sin\frac{\theta}{2} = \operatorname{sgn}(\sin\theta)\sqrt{\frac{1-\cos\theta}{2}} =$$

Thus

$$\sqrt{z} = \sqrt{r}e^{i\theta/2} = \sqrt{r}\left(\sqrt{\frac{1+\cos\theta}{2}} + i\operatorname{sgn}(\sin\theta)\sqrt{\frac{1-\cos\theta}{2}}\right)$$
$$= \sqrt{\frac{r+r\cos\theta}{2}} + i\operatorname{sgn}(\sin\theta)\sqrt{\frac{r-r\cos\theta}{2}}$$
$$= \sqrt{\frac{|z|+\operatorname{Re}z}{2}} + i\operatorname{sgn}(\operatorname{Im}z)\sqrt{\frac{|z|-\operatorname{Re}z}{2}}$$

gives the real and imaginary parts of the principal branch of the square root.

4 Continuity of the Principal Branch of $\sqrt[n]{z}$

The distance function d(z, w) = |z - w| turns \mathbb{C} into a complete metric space. Because d(z, w) is just the standard Euclidean distance when we identify \mathbb{C} with \mathbb{R}^2 , it induces the usual topology on \mathbb{R}^2 . Because $\sqrt[n]{z} = \sqrt[n]{|z|}e^{i\frac{\operatorname{Arg} z}{n}}$, we can study its continuity by considering |z| and $\operatorname{Arg} z$ separately.

The reverse triangle inequality implies that |z| is continuous throughout \mathbb{C} . Hence so is $\sqrt[n]{|z|}$. Now consider Arg : $\mathbb{C}^{\times} \to (-\pi, \pi]$. Let $I \subset (-\pi, \pi]$ be a relatively open interval. If $I = (\theta_1, \theta_2)$, then $\operatorname{Arg}^{-1}(I)$ is the open infinite sector $\theta_1 < \operatorname{Arg} z < \theta_2$. However, if $I = (\theta, \pi]$, then $\operatorname{Arg}^{-1}(I)$ is the half-open infinite sector $\theta < \operatorname{Arg} z \leq \pi$. If $\theta \in (-\pi, \pi)$, this is sector is not open in \mathbb{C}^{\times} . Thus $\operatorname{Arg} z$ fails to be a continuous function.

Arg z fails to be continuous simply because the endpoint π belongs to its codomain. We can omit the value π provided that we also delete $\operatorname{Arg}^{-1}({\pi}) = (-\infty, 0)$ from \mathbb{C}^{\times} . This produces the *slit plane* $\Omega = \mathbb{C} \setminus (-\infty, 0]$, and we immediately conclude that

$$\operatorname{Arg}: \Omega \to (-\pi, \pi)$$

is continuous. Because $\sqrt[n]{|z|}$ is continuous everywhere, we conclude that $\sqrt[n]{z}$ becomes a continuous function when restricted to the slit plane Ω . We cannot include the slit because for $x \in (-\infty, 0)$ we have

$$\sqrt[n]{x+i0^+} = \lim_{y \to 0^+} \sqrt[n]{x+iy} = \sqrt[n]{-x}e^{i\pi/n},$$
$$\sqrt[n]{x+i0^-} = \lim_{y \to 0^-} \sqrt[n]{x+iy} = \sqrt[n]{-x}e^{-i\pi/n},$$

since as we approach the negative real axis from above, $\operatorname{Arg} z \to \pi$, whereas $\operatorname{Arg} z \to -\pi$ as we approach from below. Consequently $\lim_{z\to x} \sqrt[n]{z}$ does not exist for $x \in (-\infty, 0)$.