Complex nth Roots

R. C. Daileda

1 Roots of Unity

For $n \in \mathbb{N}$, the complex solutions of the equation $z^{n}=1$ are called the nth roots of unity. We let μ_{n} denote the set of nth roots of unity in \mathbb{C}. Note that we always have $1 \in \mu_{n}$ so that $\left|\mu_{n}\right| \geq 1$. On the other hand, because the nth roots of unity are the roots of the degree n polynomial $X^{n}-1$, and \mathbb{C} is a field, $\left|\mu_{n}\right| \leq n$. We will prove that, in fact, $\left|\mu_{n}\right|=n$. That is, $z^{n}=1$ has exactly n solutions in \mathbb{C}.

We begin with some convenient notation. For $z_{1}, z_{2}, a \in \mathbb{C}$, we say z_{1} is congruent to z_{2} modulo a, and write $z_{1} \equiv z_{2}(\bmod a)$, whenever $z_{1}-z_{2} \in a \mathbb{Z}$, or equivalently when $z_{1}=z_{2}+n a$ for some $n \in \mathbb{Z}$. It is easy to check that congruence modulo a is an equivalence relation, and that if $z_{1} \equiv z_{2}(\bmod a)$, then $w z_{1} \equiv w z_{2}$ $(\bmod w a)$ for all $w \in \mathbb{C} .{ }^{1}$

The complex numbers of modulus 1 are those with polar representation $e^{i \theta}, \theta \in \mathbb{R}$. Because θ represents the argument of $e^{1 \theta}$, we immediately conclude that $e^{i \theta_{1}}=e^{i \theta_{2}}$ if and only if θ_{1} and θ_{2} differ by a multiple of 2π, i.e. $\theta_{1} \equiv \theta_{2}(\bmod 2 \pi)$. In particular, $e^{i \theta}=1=e^{i 0}$ if and only if $\theta \equiv 0(\bmod 2 \pi)$.

Now let's compute μ_{n}. Write $z=r e^{i \theta}$ with $r>0$ and $\theta \in \mathbb{R}$. Then

$$
z^{n}=1 \Leftrightarrow r^{n} e^{i n \theta}=1 \Leftrightarrow\left\{\begin{array}{c}
r^{n}=1 \\
\text { and } \\
n \theta \equiv 0(\bmod 2 \pi)
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
r=1 \\
\text { and } \\
\theta \equiv 0\left(\bmod \frac{2 \pi}{n}\right)
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
r=1 \\
\text { and } \\
\theta=\frac{2 \pi j}{n}, j \in \mathbb{Z}
\end{array}\right\} .
$$

Thus the solutions to $z^{n}=1$ are precisely $z=e^{2 \pi i j / n}$ for $j \in \mathbb{Z}$. Since we know there can be no more than n solutions, there are necessarily redundancies in this list. Indeed, we have

$$
e^{2 \pi i j / n}=e^{2 \pi i k / n} \Leftrightarrow \frac{2 \pi j}{n} \equiv \frac{2 \pi k}{n}(\bmod 2 \pi) \Leftrightarrow j \equiv k(\bmod n)
$$

It follows that there are exactly n distinct solutions, one for each congruence class modulo n. Choosing the standard remainder representatives for j, we arrive at the complete list of (distinct) solutions to $z^{n}=1$ in \mathbb{C} :

$$
\mu_{n}=\left\{e^{2 \pi i j / n} \mid j=0,1,2, \ldots, n-1\right\}
$$

Notice that if we let $\omega=e^{2 \pi i / n}$, then $e^{2 \pi i j / n}=\omega^{j}$. We therefore can also write

$$
\mu_{n}=\left\{1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right\}
$$

Let's summarize.
Theorem 1. For $n \in \mathbb{N},\left|\mu_{n}\right|=n$. In particular,

$$
\begin{align*}
\mu_{n} & =\left\{e^{2 \pi i j / n} \mid j=0,1,2, \ldots, n-1\right\} \tag{1}\\
& =\left\{1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right\} \tag{2}
\end{align*}
$$

where $\omega=e^{2 \pi i / n}$.

[^0]
Remarks.

1. Equation (1) shows that, geometrically speaking, the elements of μ_{n} form the vertices of a regular n-gon on the unit circle.
2. The reader will readily verify that μ_{n} is a subgroup of \mathbb{C}^{\times}. The description (2) shows that μ_{n} is actually a cyclic group ${ }^{2}$ of order n, and so is isomorphic to $\mathbb{Z} / n \mathbb{Z}$.

2 General nth Roots

The nth roots of $a \in \mathbb{C}^{\times}$are the complex solutions of the equation $z^{n}=a$. Writing $z=r e^{i \theta}$ and $a=R e^{i \phi}$ $(r, R>0)$, we immediately find that $z^{n}=a$ if and only if $r^{n}=R$ and $n \theta \equiv \phi(\bmod 2 \pi)$. Rewriting these conditions as $r=\sqrt[n]{R}$ and $\theta \equiv \frac{\phi}{n}\left(\bmod \frac{2 \pi}{n}\right)$, we find that a particular nth root of a is $\alpha=\sqrt[n]{R} e^{i \phi / n}$. The following theorem tells us that every other nth root differs from α by a factor in μ_{n}.

Theorem 2. Let $n \in \mathbb{N}$ and $a \in \mathbb{C}^{\times}$. Then a has exactly n nth roots $i n \mathbb{C}$, which are the members of the set

$$
\begin{equation*}
\alpha \mu_{n}=\left\{\alpha, \alpha \omega, \alpha \omega^{2}, \ldots, \alpha \omega^{n-1}\right\} \tag{3}
\end{equation*}
$$

with $\alpha=\sqrt[n]{|a|} e^{i \frac{\operatorname{Arg} a}{n}}$.
Proof. Let A denote the set of nth roots of A. Suppose that $z=\alpha \zeta$ with $\zeta \in \mu_{n}$. Then

$$
z^{n}=\alpha^{n} \zeta^{n}=a \cdot 1=a,
$$

so that $z \in A$. Thus $\alpha \mu_{n} \subset A$. Conversely, if $z \in A$ is an nth root of a, let $\zeta=z / \alpha$. Then $z=\alpha \zeta$ and

$$
\zeta^{n}=\frac{z^{n}}{\alpha^{n}}=\frac{a}{a}=1
$$

so that $\zeta \in \mu_{n}$. Hence $z \in \alpha \mu_{n}$ and $A \subset \alpha \mu_{n}$. This is enough to establish our result.

Remarks.

3. Because the effect of multiplication by a complex number z is scaling by $|z|$ and (positive) rotation by $\arg z$, equation (3) shows that the nth roots of a also form the vertices of a regular n-gon, with radius $\sqrt[n]{|a|}$.
4. The conclusion of Theorem 2 still holds if α is replaced by any nth root of a, by the same proof.
5. The nth power map $P_{n}: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}$, given by $P_{n}(z)=z^{n}$, is a homomorphism with ker $P_{n}=\mu_{n}$. The paragraph preceding the statement Theorem 2 proves that P_{n} is surjective, and Theorem 1 shows that ker $P_{n}=\left\{1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right\}$. Theorem 2 is then just a restatement of the fact that the fiber over a point under a homomorphism is just a coset of the kernel.

3 Root Functions

The preceding section shows that in order to define $\sqrt[n]{z}$ as a function on \mathbb{C}^{\times}, a particular choice of nth roots needs to be made for each $z \in \mathbb{C}$. A similar situation occurs when working with real square roots, where one declares that for $x \in \mathbb{R}^{+}, \sqrt{x}$ denotes the positive square root of x. But rather than (directly) restricting the codomain in this manner in order to make $\sqrt[n]{z}$ a function, we will restrict the domain.

[^1]In the course of proving Theorem 2 we were led to the relationship $\theta \equiv \frac{\phi}{n}\left(\bmod \frac{2 \pi}{n}\right)$ between the arguments ϕ and θ of z and its nth roots, respectively. Because $2 \pi \mathbb{Z}$ is a proper subgroup of $\frac{2 \pi}{n} \mathbb{Z}$ (for $n \geq 2$), this congruence does not uniquely determine a single argument. This ambiguity is the source of the multi-valued nature of the nth root. However, as we've seen, if we simply replace the congruence by an equality we produce a single nth root. This, however, isn't sufficient to uniquely determine a specific nth root unless we also specify the value of ϕ, i.e. the argument of z.

Therefore, for $z \in \mathbb{C}^{\times}$we define the principal branch of $\sqrt[n]{z}$ by

$$
\sqrt[n]{z}=\sqrt[n]{|z|} e^{i \frac{\operatorname{Arg} z}{n}}
$$

If $\omega=e^{2 \pi i / n}$, the functions

$$
f_{j}(z)=\omega^{j} \sqrt[n]{z}, j=1,2, \ldots, n-1
$$

also define branches of the nth root function. Together with $\sqrt[n]{z}$, the values of these functions at a fixed z yield the n distinct nth roots of z.

Example. Let $z=r e^{i \theta} \in \mathbb{C}^{\times}$. If $\theta \in(-\pi, \pi]$, then $\theta / 2 \in(-\pi / 2, \pi / 2]$. In particular, $\cos \theta / 2 \geq 0$. It follows from the half-angle formula for cosine that

$$
\cos \frac{\theta}{2}=\sqrt{\frac{1+\cos \theta}{2}}
$$

Because θ and $\theta / 2$ have the same $\operatorname{sign}, \sin \theta$ and $\sin \theta / 2$ also have the same sign. Therefore the half-angle formula for sine yields

$$
\sin \frac{\theta}{2}=\operatorname{sgn}(\sin \theta) \sqrt{\frac{1-\cos \theta}{2}}=
$$

Thus

$$
\begin{aligned}
\sqrt{z} & =\sqrt{r} e^{i \theta / 2}=\sqrt{r}\left(\sqrt{\frac{1+\cos \theta}{2}}+i \operatorname{sgn}(\sin \theta) \sqrt{\frac{1-\cos \theta}{2}}\right) \\
& =\sqrt{\frac{r+r \cos \theta}{2}}+i \operatorname{sgn}(\sin \theta) \sqrt{\frac{r-r \cos \theta}{2}} \\
& =\sqrt{\frac{|z|+\operatorname{Re} z}{2}}+i \operatorname{sgn}(\operatorname{Im} z) \sqrt{\frac{|z|-\operatorname{Re} z}{2}}
\end{aligned}
$$

gives the real and imaginary parts of the principal branch of the square root.

4 Continuity of the Principal Branch of $\sqrt[n]{z}$

The distance function $d(z, w)=|z-w|$ turns \mathbb{C} into a complete metric space. Because $d(z, w)$ is just the standard Euclidean distance when we identify \mathbb{C} with \mathbb{R}^{2}, it induces the usual topology on \mathbb{R}^{2}. Because $\sqrt[n]{z}=\sqrt[n]{|z|} e^{i \frac{\operatorname{Arg} z}{n}}$, we can study its continuity by considering $|z|$ and $\operatorname{Arg} z$ separately.

The reverse triangle inequality implies that $|z|$ is continuous throughout \mathbb{C}. Hence so is $\sqrt[n]{|z|}$. Now consider Arg : $\mathbb{C}^{\times} \rightarrow(-\pi, \pi]$. Let $I \subset(-\pi, \pi]$ be a relatively open interval. If $I=\left(\theta_{1}, \theta_{2}\right)$, then $\operatorname{Arg}^{-1}(I)$ is the open infinite sector $\theta_{1}<\operatorname{Arg} z<\theta_{2}$. However, if $I=(\theta, \pi]$, then $\operatorname{Arg}^{-1}(I)$ is the half-open infinite sector $\theta<\operatorname{Arg} z \leq \pi$. If $\theta \in(-\pi, \pi)$, this is sector is not open in \mathbb{C}^{\times}. Thus $\operatorname{Arg} z$ fails to be a continuous function.
$\operatorname{Arg} z$ fails to be continuous simply because the endpoint π belongs to its codomain. We can omit the value π provided that we also delete $\operatorname{Arg}^{-1}(\{\pi\})=(-\infty, 0)$ from \mathbb{C}^{\times}. This produces the slit plane $\Omega=\mathbb{C} \backslash(-\infty, 0]$, and we immediately conclude that

$$
\operatorname{Arg}: \Omega \rightarrow(-\pi, \pi)
$$

is continuous. Because $\sqrt[n]{|z|}$ is continuous everywhere, we conclude that $\sqrt[n]{z}$ becomes a continuous function when restricted to the slit plane Ω. We cannot include the slit because for $x \in(-\infty, 0)$ we have

$$
\begin{aligned}
& \sqrt[n]{x+i 0^{+}}=\lim _{y \rightarrow 0^{+}} \sqrt[n]{x+i y}=\sqrt[n]{-x} e^{i \pi / n} \\
& \sqrt[n]{x+i 0^{-}}=\lim _{y \rightarrow 0^{-}} \sqrt[n]{x+i y}=\sqrt[n]{-x} e^{-i \pi / n}
\end{aligned}
$$

since as we approach the negative real axis from above, $\operatorname{Arg} z \rightarrow \pi$, whereas $\operatorname{Arg} z \rightarrow-\pi$ as we approach from below. Consequently $\lim _{z \rightarrow x} \sqrt[n]{z}$ does not exist for $x \in(-\infty, 0)$.

[^0]: ${ }^{1} z_{1} \equiv z_{2}(\bmod a)$ if and only if z_{1} and z_{2} map (under the canonical surjection) to the same coset in the quotient group $\mathbb{C} / a \mathbb{Z}$.

[^1]: ${ }^{2}$ This also follows from a much deeper result on finite multiplicative subgroups of fields.

