
Complex nth Roots

R. C. Daileda

1 Roots of Unity

For n ∈ N, the complex solutions of the equation zn = 1 are called the nth roots of unity. We let µn denote
the set of nth roots of unity in C. Note that we always have 1 ∈ µn so that |µn| ≥ 1. On the other hand,
because the nth roots of unity are the roots of the degree n polynomial Xn − 1, and C is a field, |µn| ≤ n.
We will prove that, in fact, |µn| = n. That is, zn = 1 has exactly n solutions in C.

We begin with some convenient notation. For z1, z2, a ∈ C, we say z1 is congruent to z2 modulo a, and
write z1 ≡ z2 (mod a), whenever z1 − z2 ∈ aZ, or equivalently when z1 = z2 + na for some n ∈ Z. It is easy
to check that congruence modulo a is an equivalence relation, and that if z1 ≡ z2 (mod a), then wz1 ≡ wz2

(mod wa) for all w ∈ C.1

The complex numbers of modulus 1 are those with polar representation eiθ, θ ∈ R. Because θ represents
the argument of eıθ, we immediately conclude that eiθ1 = eiθ2 if and only if θ1 and θ2 differ by a multiple of
2π, i.e. θ1 ≡ θ2 (mod 2π). In particular, eiθ = 1 = ei0 if and only if θ ≡ 0 (mod 2π).

Now let’s compute µn. Write z = reiθ with r > 0 and θ ∈ R. Then

zn = 1 ⇔ rneinθ = 1 ⇔

 rn = 1
and

nθ ≡ 0 (mod 2π)

 ⇔

 r = 1
and

θ ≡ 0 (mod 2π
n )

 ⇔


r = 1
and

θ = 2πj
n , j ∈ Z

 .

Thus the solutions to zn = 1 are precisely z = e2πij/n for j ∈ Z. Since we know there can be no more than
n solutions, there are necessarily redundancies in this list. Indeed, we have

e2πij/n = e2πik/n ⇔ 2πj

n
≡ 2πk

n
(mod 2π) ⇔ j ≡ k (mod n).

It follows that there are exactly n distinct solutions, one for each congruence class modulo n. Choosing the
standard remainder representatives for j, we arrive at the complete list of (distinct) solutions to zn = 1 in
C:

µn = {e2πij/n | j = 0, 1, 2, . . . , n− 1}.

Notice that if we let ω = e2πi/n, then e2πij/n = ωj . We therefore can also write

µn = {1, ω, ω2, . . . , ωn−1}.

Let’s summarize.

Theorem 1. For n ∈ N, |µn| = n. In particular,

µn = {e2πij/n | j = 0, 1, 2, . . . , n− 1} (1)

= {1, ω, ω2, . . . , ωn−1}, (2)

where ω = e2πi/n.

1z1 ≡ z2 (mod a) if and only if z1 and z2 map (under the canonical surjection) to the same coset in the quotient group
C/aZ.
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Remarks.

1. Equation (1) shows that, geometrically speaking, the elements of µn form the vertices of a regular
n-gon on the unit circle.

2. The reader will readily verify that µn is a subgroup of C×. The description (2) shows that µn is
actually a cyclic group2 of order n, and so is isomorphic to Z/nZ.

2 General nth Roots

The nth roots of a ∈ C× are the complex solutions of the equation zn = a. Writing z = reiθ and a = Reiφ

(r,R > 0), we immediately find that zn = a if and only if rn = R and nθ ≡ φ (mod 2π). Rewriting these
conditions as r = n

√
R and θ ≡ φ

n (mod 2π
n ), we find that a particular nth root of a is α = n

√
Reiφ/n. The

following theorem tells us that every other nth root differs from α by a factor in µn.

Theorem 2. Let n ∈ N and a ∈ C×. Then a has exactly n nth roots in C, which are the members of the set

αµn = {α, αω, αω2, . . . , αωn−1}, (3)

with α = n
√
|a|ei

Arg a
n .

Proof. Let A denote the set of nth roots of A. Suppose that z = αζ with ζ ∈ µn. Then

zn = αnζn = a · 1 = a,

so that z ∈ A. Thus αµn ⊂ A. Conversely, if z ∈ A is an nth root of a, let ζ = z/α. Then z = αζ and

ζn =
zn

αn
=
a

a
= 1,

so that ζ ∈ µn. Hence z ∈ αµn and A ⊂ αµn. This is enough to establish our result.

Remarks.

3. Because the effect of multiplication by a complex number z is scaling by |z| and (positive) rotation by
arg z, equation (3) shows that the nth roots of a also form the vertices of a regular n-gon, with radius
n
√
|a|.

4. The conclusion of Theorem 2 still holds if α is replaced by any nth root of a, by the same proof.

5. The nth power map Pn : C× → C×, given by Pn(z) = zn, is a homomorphism with kerPn = µn. The
paragraph preceding the statement Theorem 2 proves that Pn is surjective, and Theorem 1 shows that
kerPn = {1, ω, ω2, . . . , ωn−1}. Theorem 2 is then just a restatement of the fact that the fiber over a
point under a homomorphism is just a coset of the kernel.

3 Root Functions

The preceding section shows that in order to define n
√
z as a function on C×, a particular choice of nth roots

needs to be made for each z ∈ C. A similar situation occurs when working with real square roots, where one
declares that for x ∈ R+,

√
x denotes the positive square root of x. But rather than (directly) restricting

the codomain in this manner in order to make n
√
z a function, we will restrict the domain.

2This also follows from a much deeper result on finite multiplicative subgroups of fields.
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In the course of proving Theorem 2 we were led to the relationship θ ≡ φ
n (mod 2π

n ) between the arguments
φ and θ of z and its nth roots, respectively. Because 2πZ is a proper subgroup of 2π

n Z (for n ≥ 2), this
congruence does not uniquely determine a single argument. This ambiguity is the source of the multi-valued
nature of the nth root. However, as we’ve seen, if we simply replace the congruence by an equality we
produce a single nth root. This, however, isn’t sufficient to uniquely determine a specific nth root unless we
also specify the value of φ, i.e. the argument of z.

Therefore, for z ∈ C× we define the principal branch of n
√
z by

n
√
z = n

√
|z|ei

Arg z
n .

If ω = e2πi/n, the functions
fj(z) = ωj n

√
z, j = 1, 2, . . . , n− 1

also define branches of the nth root function. Together with n
√
z, the values of these functions at a fixed z

yield the n distinct nth roots of z.

Example. Let z = reiθ ∈ C×. If θ ∈ (−π, π], then θ/2 ∈ (−π/2, π/2]. In particular, cos θ/2 ≥ 0. It follows
from the half-angle formula for cosine that

cos
θ

2
=

√
1 + cos θ

2
.

Because θ and θ/2 have the same sign, sin θ and sin θ/2 also have the same sign. Therefore the half-angle
formula for sine yields

sin
θ

2
= sgn(sin θ)

√
1− cos θ

2
=

Thus
√
z =
√
reiθ/2 =

√
r

(√
1 + cos θ

2
+ i sgn(sin θ)

√
1− cos θ

2

)

=

√
r + r cos θ

2
+ i sgn(sin θ)

√
r − r cos θ

2

=

√
|z|+ Re z

2
+ i sgn(Im z)

√
|z| − Re z

2

gives the real and imaginary parts of the principal branch of the square root.

4 Continuity of the Principal Branch of n
√
z

The distance function d(z, w) = |z − w| turns C into a complete metric space. Because d(z, w) is just the
standard Euclidean distance when we identify C with R2, it induces the usual topology on R2. Because
n
√
z = n

√
|z|ei

Arg z
n , we can study its continuity by considering |z| and Arg z separately.

The reverse triangle inequality implies that |z| is continuous throughout C. Hence so is n
√
|z|. Now

consider Arg : C× → (−π, π]. Let I ⊂ (−π, π] be a relatively open interval. If I = (θ1, θ2), then Arg−1(I)
is the open infinite sector θ1 < Arg z < θ2. However, if I = (θ, π], then Arg−1(I) is the half-open infinite
sector θ < Arg z ≤ π. If θ ∈ (−π, π), this is sector is not open in C×. Thus Arg z fails to be a continuous
function.

Arg z fails to be continuous simply because the endpoint π belongs to its codomain. We can omit the value
π provided that we also delete Arg−1({π}) = (−∞, 0) from C×. This produces the slit plane Ω = C\(−∞, 0],
and we immediately conclude that

Arg : Ω→ (−π, π)
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is continuous. Because n
√
|z| is continuous everywhere, we conclude that n

√
z becomes a continuous function

when restricted to the slit plane Ω. We cannot include the slit because for x ∈ (−∞, 0) we have

n
√
x+ i0+ = lim

y→0+

n
√
x+ iy = n

√
−xeiπ/n,

n
√
x+ i0− = lim

y→0−

n
√
x+ iy = n

√
−xe−iπ/n,

since as we approach the negative real axis from above, Arg z → π, whereas Arg z → −π as we approach
from below. Consequently limz→x

n
√
z does not exist for x ∈ (−∞, 0).
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