Complex nth Roots

R. C. Daileda

1 Roots of Unity

For n € N, the complex solutions of the equation z" = 1 are called the nth roots of unity. We let u, denote
the set of nth roots of unity in C. Note that we always have 1 € u,, so that |u,| > 1. On the other hand,
because the nth roots of unity are the roots of the degree n polynomial X™ — 1, and C is a field, |u,| < n.
We will prove that, in fact, |p,| = n. That is, 2™ = 1 has exactly n solutions in C.

We begin with some convenient notation. For zi1,29,a € C, we say z1 is congruent to zo modulo a, and
write z1 = 2o (mod a), whenever z; — 2o € aZ, or equivalently when z; = 25 + na for some n € Z. It is easy
to check that congruence modulo a is an equivalence relation, and that if z; = zo (mod a), then wz; = wzy
(mod wa) for all w € C.1

The complex numbers of modulus 1 are those with polar representation e?, § € R. Because @ represents
the argument of e?, we immediately conclude that et = €2 if and only if #; and 65 differ by a multiple of
2, i.e. §; = 0o (mod 27). In particular, e’ = 1 = €% if and only if # = 0 (mod 27).

Now let’s compute pi,,. Write z = re? with » > 0 and # € R. Then
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Thus the solutions to 2" = 1 are precisely z = e2™%/" for j € Z. Since we know there can be no more than
n solutions, there are necessarily redundancies in this list. Indeed, we have
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emia/n — g2mik/n (mod 27) < j =k (mod n).

It follows that there are exactly n distinct solutions, one for each congruence class modulo n. Choosing the
standard remainder representatives for j, we arrive at the complete list of (distinct) solutions to z” =1 in
C:

i = {279/ |5 =0,1,2,...,n — 1}.

Notice that if we let w = e2™/™ then €2™%/™ = wJ. We therefore can also write
pn = {1l w,w?, . W
Let’s summarize.
Theorem 1. Forn € N, |u,| =n. In particular,
i = {€¥™9/7 5 =0,1,2,...,n—1} (1)
= {l,w,w?, ..., "}, (2)

where w = 2™/,

121 = 29 (mod a) if and only if z; and z2 map (under the canonical surjection) to the same coset in the quotient group
C/al.



Remarks.
1. Equation (1) shows that, geometrically speaking, the elements of p, form the vertices of a regular
n-gon on the unit circle.

2. The reader will readily verify that p, is a subgroup of C*. The description (2) shows that pu, is
actually a cyclic group? of order n, and so is isomorphic to Z/nZ.

2 General nth Roots

The nth roots of a € C* are the complex solutions of the equation 2™ = a. Writing z = re*’ and a = Re*®
(r, R > 0), we immediately find that 2™ = a if and only if ¥ = R and nf = ¢ (mod 27). Rewriting these
conditions as r = /R and 0 = % (mod 27”)7 we find that a particular nth root of a is o = {/Re’/™. The
following theorem tells us that every other nth root differs from « by a factor in p,,.

Theorem 2. Letn € N and a € C*. Then a has exactly n nth roots in C, which are the members of the set
ap, = {a,aw, aw?, ... aw™ 1}, (3)

with « = § |a|ei%

Proof. Let A denote the set of nth roots of A. Suppose that z = a¢ with ¢ € p,. Then
=a"("=a-1=aq,

so that z € A. Thus au, C A. Conversely, if z € A is an nth root of a, let { = z/a. Then z = a and

z a
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so that ¢ € p,. Hence z € ap, and A C apuy,. This is enough to establish our result. O

Remarks.

3. Because the effect of multiplication by a complex number z is scaling by |z| and (positive) rotation by
arg z, equation (3) shows that the nth roots of a also form the vertices of a regular n-gon, with radius
Ylal.

4. The conclusion of Theorem 2 still holds if « is replaced by any nth root of a, by the same proof.

5. The nth power map P, : C* — C*, given by P,(z) = 2", is a homomorphism with ker P, = p,,. The
paragraph preceding the statement Theorem 2 proves that P, is surjective, and Theorem 1 shows that
ker P, = {1,w,w?,...,w" 1}. Theorem 2 is then just a restatement of the fact that the fiber over a
point under a homomorphism is just a coset of the kernel.

3 Root Functions

The preceding section shows that in order to define {/z as a function on C*, a particular choice of nth roots
needs to be made for each z € C. A similar situation occurs when working with real square roots, where one
declares that for x € RT, \/z denotes the positive square root of x. But rather than (directly) restricting
the codomain in this manner in order to make {/z a function, we will restrict the domain.

2This also follows from a much deeper result on finite multiplicative subgroups of fields.



In the course of proving Theorem 2 we were led to the relationship 8 = % (mod 27”) between the arguments
¢ and 6 of z and its nth roots, respectively. Because 27Z is a proper subgroup of %’TZ (for n > 2), this
congruence does not uniquely determine a single argument. This ambiguity is the source of the multi-valued
nature of the nth root. However, as we've seen, if we simply replace the congruence by an equality we
produce a single nth root. This, however, isn’t sufficient to uniquely determine a specific nth root unless we
also specify the value of ¢, i.e. the argument of z.

Therefore, for 2 € C* we define the principal branch of /z by

- Arg z

W: 3 |Z|€’L [

If w = €2™/™ the functions ‘
fi(z)=w ¥z j=1,2,...,n—1

also define branches of the nth root function. Together with {/z, the values of these functions at a fixed z
yield the n distinct nth roots of z.

Example. Let z = re?® € CX. If § € (—, 7], then 6/2 € (—7/2,7/2]. In particular, cos /2 > 0. It follows

from the half-angle formula for cosine that
cos 6 [1+cosb
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Because 6 and 6/2 have the same sign, sin€ and sin6/2 also have the same sign. Therefore the half-angle

formula for sine yields
0 1—cosé
sin 5= sgn(sinf)4/ % =

: 1 0 1-— 0
\/5:\/;619/2:\/;< /+2cos+isgn(sin9),lgos>

r+rcosf ) r —rcosf

=4/ ——— +isgn(sinf)y/ ———
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_ ‘/W%+isgn<lmz)1/lzl—%

gives the real and imaginary parts of the principal branch of the square root.

Thus

4 Continuity of the Principal Branch of {/z

The distance function d(z,w) = |z — w| turns C into a complete metric space. Because d(z,w) is just the
standard Euclidean distance when we identify C with R2, it induces the usual topology on R%. Because

V2= /|zlet Arfz, we can study its continuity by considering |z| and Arg z separately.

The reverse triangle inequality implies that |z| is continuous throughout C. Hence so is W . Now
consider Arg : C* — (—m,7]. Let I C (—m, 7 be a relatively open interval. If I = (6y,60y), then Arg™*(I)
is the open infinite sector 61 < Argz < 63. However, if I = (0, 7], then Arg_l(I) is the half-open infinite
sector 6 < Argz < 7. If 0 € (—m, ), this is sector is not open in C*. Thus Arg z fails to be a continuous
function.

Arg z fails to be continuous simply because the endpoint 7 belongs to its codomain. We can omit the value
7 provided that we also delete Arg ™! ({n}) = (—00, 0) from C*. This produces the slit plane Q = C\ (—o0, 0],
and we immediately conclude that
Arg: Q — (—m, )



is continuous. Because {/|z| is continuous everywhere, we conclude that {/z becomes a continuous function
when restricted to the slit plane . We cannot include the slit because for z € (—o0, 0) we have

W = lim+ Vm = _weiﬂ—/n7
y—0

Vo+i0- = lim a+ iy = Y—ze /",
y—0—

since as we approach the negative real axis from above, Argz — 7, whereas Argz — —m as we approach
from below. Consequently lim,_,, {/z does not exist for 2 € (—o0, 0).



