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Introduction

In numerous applications, a given quantity is most naturally
described through a relationship (equation) involving its
derivative(s).

For instance, Newton’s second law (F = ma) gives the relationship
between the forces acting on an object, its mass, and its
acceleration, which is the second derivative of its position.

Equations that relate a function to its derivative(s) are called
differential equations, and learning how to solve certain types of
differential equations will be our goal for the next few weeks.
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Ordinary Differential Equations

An ordinary differential equation (ODE) is an equation of the form

F (x , y , y ′, y ′′, . . . , y (n)) = 0,

where y = y(x) is an unknown function of the (independent)
variable x .

Remark. It is common (and sometimes useful) to write some
ODEs with nonzero terms on both sides of the equality.

For instance, the ODE y2 + y ′ = 0 is equivalent to y ′ = −y2.
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Examples of ODEs

1. y ′ = −y2

2. (sin x)
dy

dx
+ (cos x)y = x

3. y ′ = 3x2 + 5x

4.
dP

dt
= kP , where k a constant (the natural growth equation)

5.
dP

dt
= kP

(

1−
P

M

)

, where k ,M are constants (the logistic

equation)

6.
d2x

dt2
= −

k

m
x where k ,m are positive constants (the spring

motion equation)

7. y ′′ − 5y ′ + 6y = 6x + 1
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Terminology

The order of an ODE is the highest derivative occurring in the
equation.

Examples 1-5 above all have order 1 (or are first order). Examples
6 and 7 have order 2 (are second order).

A solution to an ODE (with independent variable x) is a function
f (x) so that the ODE is true when we set y = f (x).

In principle, one can always check if a given function is a solution
to an ODE: simply plug it in and see if the equation is valid!
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Examples

Example 1

Show that for any constant C the function

y =
1

x + C

is a solution to y ′ = −y2.

Solution. We have

y ′ =
−1

(x + C )2
= −

(

1

x + C

)2

= − y2.

Remark. We will see that, together with y = 0, this gives every
possible solution to y ′ = −y2.
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Example 2

Show that for any constant C the function

y =
x2 + C

2 sin x

is a solution to (sin x)
dy

dx
+ (cos x)y = x .

Solution. The quotient rule yields

dy

dx
=

4x sin x − 2(x2 + C ) cos x

4 sin2 x
,

so that

(sin x)
dy

dx
+ (cos x)y =

4x sin x − 2(x2 + C ) cos x

4 sin x
+

(cos x)(x2 + C )

2 sin x

=
4x sin x

4 sin x
= x .
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Example 3

Find every solution to the ODE y ′ = 3x2 + 5x .

Solution. Integrating both sides we have

y =

∫

y ′ dx =

∫

3x2 + 5x dx = x3 +
5

2
x + C .

Remark. In general, the solutions to y ′ = f (x) are given by

y =

∫

f (x) dx .

So finding antiderivatives amounts to solving (very simple) ODEs!
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Example 4

Show that for any constant P0 the function

P = P0e
kt

solves the natural growth equation
dP

dt
= kP .

Solution. If P = P0e
kt , then the chain rule gives

dP

dt
= P0ke

kt = kP .

Remark. We will see that this gives every solution to the natural
growth equation.
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Example 5

Show that for any constant C the function

P =
M

1 + Ce−kt

solves the logistic equation
dP

dt
= kP

(

1−
P

M

)

.

Solution. Writing P = M(1 + Ce−kt)−1, the chain rule yields

dP

dt
= −M(1 + Ce−kt)−2(−Cke−kt) =

MCke−kt

(1 + Ce−kt)2

= k ·
M

1 + Ce−kt
·

Ce−kt

1 + Ce−kt
= kP ·

Ce−kt + 1− 1

1 + Ce−kt

= kP

(

1−
1

1 + Ce−kt

)

= kP

(

1−
P

M

)

.
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Example 6

Show that for any constants C1 and C2 the function

x(t) = C1 cos

(

√

k

m
t

)

+ C2 sin

(

√

k

m
t

)

is a solution of the spring motion equation
d2x

dt2
= −

k

m
x .

Solution. By the chain rule we have

dx

dt
= − C1

√

k

m
sin

(

√

k

m
t

)

+ C2

√

k

m
cos

(

√

k

m
t

)

so that

d2x

dt2
= − C1

k

m
cos

(

√

k

m
t

)

− C2
k

m
sin

(

√

k

m
t

)

= −
k

m
x .
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Example 7

Show that for any constants C1 and C2 the function

y = C1e
2x + C2e

3x + x + 1

is a solution to y ′′ − 5y ′ + 6y = 6x + 1.

Solution. If y = C1e
2x + C2e

3x + x + 1, then

y ′ = 2C1e
2x + 3C2e

3x + 1 ⇒ y ′′ = 4C1e
2x + 9C2e

3x .

Thus

y ′′ − 5y ′ + 6y = (4C1e
2x + 9C2e

3x)− 5(2C1e
2x + 3C2e

3x + 1)

+ 6(C1e
2x + C2e

3x + x + 1) = 6x + 1.
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Although it is (usually) easy to check that a given function solves a
certain ODE, this will rarely be our concern.

Instead, we will typically be given an ODE and asked to find its
solutions.

Solving an ODE means finding every solution. Typically there are
infinitely many solutions, but frequently they can be described in
terms of one or more parameters (constants).

Solving ODEs in general is quite difficult. However, if we restrict
the type of ODE being considered (e.g. first order linear ODEs),
we can sometimes give explicit solution procedures.
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Initial Value Problems

An initial value problem (IVP) is an ODE of order n together with
initial conditions

y(x0) = c0, y ′(x0) = c1, y ′′(x0) = c2, . . . , y
(n−1)(x0) = cn−1.

A solution to an IVP is a function that solves the ODE and

satisfies the initial conditions.

While ODEs have many solutions, the solutions to IVPs are
typically unique.

To solve an IVP one usually solves the ODE first, then determines
the values of the parameters in the solution so that the initial
conditions are satisfied.
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Example 8

Solve the IVP
y ′ = −y2, y(1) = 5.

Solution. According to the remark following example 1, the ODE
y ′ = −y2 has the general solution

y =
1

x + C
.

We simply need to choose C so that y(1) = 5:

5 = y(1) =
1

1 + C
⇒ 1 + C =

1

5
⇒ C = −

4

5
.

Therefore the particular solution is

y =
1

x − 4/5
.
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Example 9

Solve the IVP

y ′′ − 5y ′ + 6y = 6x + 1, y(0) = −1, y ′(0) = 1.

Solution. The general solution was given in Example 7:

y = C1e
2x + C2e

3x + x + 1 ⇒ y ′ = 2C1e
2x + 3C2e

3x + 1.

The initial conditions require that

−1 = y(0) = C1 + C2 + 1 and 1 = y ′(0) = 2C1 + 3C2 + 1.

Variable elimination yields C1 = −6 and C2 = 4. Thus

y = −6e2x + 4e3x + x + 1 .
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Slope Fields

A first order ODE of the form

dy

dx
= F (x , y) (1)

can be though of as assigning a slope to each point in the xy -plane.

This can be visualized by drawing a small line segment of slope
F (x , y) at each point (x , y).

The resulting diagram is called a slope field or direction field.

The solutions to (1) are the functions whose graphs are tangent to
the slope field at each point.

Slope fields can provide useful qualitative information about the
solutions to (1) without the need to actually solve it first.
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Remarks.

Only first order ODEs can have slope fields.

In the context of a slope field, an initial condition y(x0) = y0
simply specifies that the graph of the solution must pass
through (x0, y0).

Example 10

Sketch the slope field of

dy

dx
= −y2

and compare it to the general solution

y =
1

x + C
.
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Example 11

Sketch the slope field of

dy

dx
= 2− xy

and several solution curves. What can you conclude about the
behavior of the solutions as x → ±∞?

Example 12

Sketch the slope field of

dy

dx
= x − y

and several solution curves. What can you conclude about the
behavior of the solutions as x → ±∞?
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