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Introduction

The first class of ODEs we will study are the (first order) separable
ODEs.

We will soon see that up to our ability to compute antiderivatives,
every separable ODE can be solved, at least implicitly.

Applications of separable equations include mixing problems and
Newton’s law of cooling.
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Separable ODEs

Definition

A (first order) ODE is called separable if it has one of the
(equivalant) forms

dy

dx
= f (x)g(y) or

dy

dx
=

f (x)

h(y)
.

Remark. To see that these are equivalent simply set

g(y) =
1

h(y)
.

Example. The ODE
dy

dx
=

3x2 − 4

2y

is separable.
Daileda Separable ODEs



Solving Separable ODEs

In principle, it is always possible to solve a separable ODE.

If we treat the derivative as a fraction we have

dy

dx
=

f (x)

g(y)
⇒ g(y) dy = f (x) dx

⇒

∫

g(y) dy =

∫

f (x) dx .

It remains to:

1. Compute both indefinite integrals.

2. Algebraically solve for y in terms of x .

Remark. Although this procedure is totally formal, it is easily
justified.

Daileda Separable ODEs



Examples

Example 1

Solve the ODE y ′ = −y2.

Solution. We write y ′ = dy
dx

and proceed as outlined above:

dy

dx
= −y2 ==⇒

y 6=0

−dy

y2
= dx ⇒

∫

−dy

y2
=

∫

dx

⇒
1

y
= x + C ⇒ y =

1

x + C
.

So the complete list of solutions is

y =
1

x + C
and y = 0 .
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Example 2

Solve the natural growth equation
dy

dx
= ky .

Solution. Since this is a separable equation, if y 6= 0 we have

dy

y
= k dx ⇒ ln |y | = kx + C0 ⇒ |y | = ekx+C0 = eC0ekx

⇒ y = ±eC0ekx .

Since C0 is arbitrary, we can replace ±eC0 with C 6= 0. But y = 0
is also a solution, so the general solution is

y = Cekx .
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Example 3

Solve the ODE
dy

dx
= 3 + 2x + 3y + 2xy .

Solution. To see that this is separable, we must factor the RHS:

dy

dx
= (3 + 3y) + (2x + 2xy) = 3(1 + y) + 2x(1 + y)

= (3 + 2x)(1 + y) ===⇒
y 6=−1

∫

dy

1 + y
=

∫

3 + 2x dx

⇒ ln |1 + y | = 3x + x2 + C ⇒ |1 + y | = ex
2+3x+C = eC ex

2+3x

⇒ 1 + y = ±eC ex
2+3x = Cex

2+3x ⇒ y = −1 + Cex
2+3x .

Note that this formula includes the “missing” solution y = −1.
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Example 4

Solve the IVP
dy

dx
=

y cos x

1 + y2
, y(0) = 1.

Solution. First we find the general solution to the (separable) ODE:

dy

dx
=

y cos x

1 + y2
==⇒
y 6=0

∫

1 + y2

y
dy =

∫

cos x dx

⇒

∫

1

y
+ y dy = sin x + C

⇒ ln |y |+
y2

2
= sin x + C .
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To solve for C , we plug in x = 0, y = 1 to get

ln |1|+
1

2
= sin 0 + C ⇒ C =

1

2
.

Because we can’t reasonably solve for y , we leave the solution in
implicit form:

ln |y |+
y2

2
= sin x +

1

2
.

Remark. Whenever possible, we will prefer to express our solutions
explicitly in the form y = f (x).
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Example 5

Solve the IVP
dy

dx
=

3x2 − 4

2y
, y(0) = −2.

Solution. First we find the general solution of the ODE:

dy

dx
=

3x2 − 4

2y
⇒

∫

2y dy =

∫

3x2 − 4 dx

⇒ y2 = x3 − 4x + C .

Before “burying” the constant C , we solve for it using the initial
condition x = 0, y = −2:

(−2)2 = 03 − 4 · 0 + C ⇒ C = 4.
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So the solution is given by

y2 = x3 − 4x + 4 ⇒ y = ±
√

x3 − 4x + 4.

Since we need y(0) = −2 < 0, we must choose the negative sign.

y = −
√

x3 − 4x + 4 .

Remark. It is interesting to note that the general solution is

y = ±
√

x3 − 4x + C ,

whose domain depends on C . This can be seen in the slope field
where y = 0 and dy/dx becomes infinite (vertical).
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Slope field for

dy

dx
=

3x2 − 4

2y

illustrating the solution
to the IVP with y(0) =
−2 (red) and the “dou-
ble tangent” at the
point where both the
numerator and denomi-
nator vanish simultane-
ously.
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