Separable ODEs

Ryan C. Daileda

Trinity University
Calculus II

Introduction

The first class of ODEs we will study are the (first order) separable ODEs.

We will soon see that up to our ability to compute antiderivatives, every separable ODE can be solved, at least implicitly.

Applications of separable equations include mixing problems and Newton's law of cooling.

Separable ODEs

Definition

A (first order) ODE is called separable if it has one of the (equivalant) forms

$$
\frac{d y}{d x}=f(x) g(y) \text { or } \frac{d y}{d x}=\frac{f(x)}{h(y)}
$$

Remark. To see that these are equivalent simply set

$$
g(y)=\frac{1}{h(y)}
$$

Example. The ODE

$$
\frac{d y}{d x}=\frac{3 x^{2}-4}{2 y}
$$

is separable.

Solving Separable ODEs

In principle, it is always possible to solve a separable ODE.
If we treat the derivative as a fraction we have

$$
\begin{aligned}
\frac{d y}{d x}=\frac{f(x)}{g(y)} & \Rightarrow g(y) d y=f(x) d x \\
& \Rightarrow \int g(y) d y=\int f(x) d x
\end{aligned}
$$

It remains to:

1. Compute both indefinite integrals.
2. Algebraically solve for y in terms of x.

Remark. Although this procedure is totally formal, it is easily justified.

Examples

Example 1

Solve the ODE $y^{\prime}=-y^{2}$.
Solution. We write $y^{\prime}=\frac{d y}{d x}$ and proceed as outlined above:

$$
\begin{aligned}
\frac{d y}{d x}=-y^{2} & \xlongequal[y \neq 0]{\Longrightarrow} \frac{-d y}{y^{2}}=d x \Rightarrow \int \frac{-d y}{y^{2}}=\int d x \\
& \Rightarrow \frac{1}{y}=x+C \Rightarrow y=\frac{1}{x+C}
\end{aligned}
$$

So the complete list of solutions is

$$
y=\frac{1}{x+C} \quad \text { and } \quad y=0
$$

Example 2

Solve the natural growth equation $\frac{d y}{d x}=k y$.

Solution. Since this is a separable equation, if $y \neq 0$ we have

$$
\begin{aligned}
\frac{d y}{y}=k d x & \Rightarrow \ln |y|=k x+C_{0} \Rightarrow|y|=e^{k x+C_{0}}=e^{C_{0}} e^{k x} \\
& \Rightarrow y= \pm e^{C_{0}} e^{k x}
\end{aligned}
$$

Since C_{0} is arbitrary, we can replace $\pm e^{C_{0}}$ with $C \neq 0$. But $y=0$ is also a solution, so the general solution is

$$
y=C e^{k x} \text {. }
$$

Example 3

Solve the ODE $\frac{d y}{d x}=3+2 x+3 y+2 x y$.

Solution. To see that this is separable, we must factor the RHS:

$$
\begin{aligned}
\frac{d y}{d x} & =(3+3 y)+(2 x+2 x y)=3(1+y)+2 x(1+y) \\
& =(3+2 x)(1+y) \xlongequal[y \neq-1]{\Longrightarrow} \int \frac{d y}{1+y}=\int 3+2 x d x \\
& \Rightarrow \ln |1+y|=3 x+x^{2}+C \Rightarrow|1+y|=e^{x^{2}+3 x+C}=e^{C} e^{x^{2}+3 x} \\
& \Rightarrow 1+y= \pm e^{C} e^{x^{2}+3 x}=C e^{x^{2}+3 x} \Rightarrow y=-1+C e^{x^{2}+3 x}
\end{aligned}
$$

Note that this formula includes the "missing" solution $y=-1 . \quad \square$

Example 4

Solve the IVP

$$
\frac{d y}{d x}=\frac{y \cos x}{1+y^{2}}, \quad y(0)=1
$$

Solution. First we find the general solution to the (separable) ODE:

$$
\begin{aligned}
\frac{d y}{d x}=\frac{y \cos x}{1+y^{2}} & \Longrightarrow \int \frac{1+y^{2}}{y} d y=\int \cos x d x \\
& \Rightarrow \int \frac{1}{y}+y d y=\sin x+C \\
& \Rightarrow \ln |y|+\frac{y^{2}}{2}=\sin x+C
\end{aligned}
$$

To solve for C, we plug in $x=0, y=1$ to get

$$
\ln |1|+\frac{1}{2}=\sin 0+C \Rightarrow C=\frac{1}{2}
$$

Because we can't reasonably solve for y, we leave the solution in implicit form:

$$
\ln |y|+\frac{y^{2}}{2}=\sin x+\frac{1}{2}
$$

Remark. Whenever possible, we will prefer to express our solutions explicitly in the form $y=f(x)$.

Example 5

Solve the IVP

$$
\frac{d y}{d x}=\frac{3 x^{2}-4}{2 y}, \quad y(0)=-2
$$

Solution. First we find the general solution of the ODE:

$$
\begin{aligned}
\frac{d y}{d x}=\frac{3 x^{2}-4}{2 y} & \Rightarrow \int 2 y d y=\int 3 x^{2}-4 d x \\
& \Rightarrow y^{2}=x^{3}-4 x+C
\end{aligned}
$$

Before "burying" the constant C, we solve for it using the initial condition $x=0, y=-2$:

$$
(-2)^{2}=0^{3}-4 \cdot 0+C \Rightarrow C=4
$$

So the solution is given by

$$
y^{2}=x^{3}-4 x+4 \Rightarrow y= \pm \sqrt{x^{3}-4 x+4}
$$

Since we need $y(0)=-2<0$, we must choose the negative sign.

$$
y=-\sqrt{x^{3}-4 x+4} .
$$

Remark. It is interesting to note that the general solution is

$$
y= \pm \sqrt{x^{3}-4 x+C}
$$

whose domain depends on C. This can be seen in the slope field where $y=0$ and $d y / d x$ becomes infinite (vertical).

Slope field for

$$
\frac{d y}{d x}=\frac{3 x^{2}-4}{2 y}
$$

illustrating the solution to the IVP with $y(0)=$ -2 (red) and the "double tangent" at the point where both the numerator and denominator vanish simultaneously.

