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Mixing Problems

In a mixing problem a certain substance X is dissolved in a fluid
that is contained in a “tank.”

Fluid containing (more or less of) substance X enters the tank at a
certain rate.

After being thoroughly mixed, the fluid drains out of the tank at a
certain rate as well.

If V (t) denotes the total amount of substance X in the tank at
time t, we arrive at a differential equation of the form

dV

dt
=

(

rate at which X

enters the tank

)

−

(

rate at which X

leaves the tank

)

= Rin − Rout .
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Example 1

The concentration of CO2 in a room with a volume of 180 cubic
meters is initially 0.15%. Fresh air containing only 0.05% CO2

enters the room at a rate of 2 cubic meters per minute. The air is
mixed well by a fan in the room and then leaves the room at the
same rate. Find the concentration of CO2 in the air in the room as
a function of time. What happens to the concentration in the long
run?

Solution. The first thing we do is introduce the relevant variables
and units. Let:

t = time (minutes), V = amount of CO2 in the room (m3),

Rin = rate at which CO2 enters =
2 · 0.0005m3

min.
= 0.001

m3

min

Rout = rate at which CO2 leaves =
V

180
·
2m3

min.
=

V

90

m3

min.
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We therefore have

dV

dt
= Rin − Rout = 0.001 −

V

90
=

1

1000
−

V

90
=

9− 100V

9000

together with the initial condition

V (0) = 0.0015 · 180 =
27

100
.

The general solution is given by
∫

dV

9− 100V
=

∫

1

9000
dt ⇒ −

1

100
ln |9− 100V | =

t

9000
+ C

⇒ ln |9− 100V | = −
t

90
+ C .

The initial condition tells us that

ln

∣

∣

∣

∣

9− 100 ·
27

100

∣

∣

∣

∣

= 0 + C ⇒ C = ln 18.
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Therefore

ln |9− 100V | = −
t

90
+ ln 18

⇒ |9− 100V | = e−t/90+ln 18 = 18e−t/90

⇒ 9− 100V = ±18e−t/90

⇒ V =
9± 18e−t/90

100
.

In order to have V (0) > 0, we must choose the positive sign:

V =
9 + 18e−t/90

100
.

The concentration is then

V

180
· 100% =

1 + 2e−t/90

20
% = 0.05 + 0.1e−t/90 % .
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Note that
lim
t→∞

0.05 + 0.1e−t/90 = 0.05,

which tells us that in the long run the concentration of CO2 in the
room will (rapidly) approach the concentration of CO2 in the
incoming air.

Remark. It is tempting to instead let C denote the concentration
of CO2 (% vol.) and set

dC

dt
= 2 · 0.05 − 2C ,

but this cannot be correct: the units of the LHS are %/min., while
the units of the RHS are (m3/min)%.
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To get the correct units we need to divide the RHS by a volume.

It turns out that the volume of the tank works.

That is, the correct ODE for C is

dC

dt
=

2 · 0.05 − 2C

180
.

Moral. To correctly set up a mixing problem, the dependent
variable should be the amount of the solute, not its percentage
concentration.
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Newton’s Law of Cooling

Suppose we have a heated object H which radiates heat to its
surroundings, thereby changing its temperature.

Newton’s law of cooling states that the time rate of change of the
temperature of H is proportional to the difference between H’s
temperature and the temperature of its surroundings (the ambient

temperature).

That is, if u(t) denotes the temperature of H at time t, and A(t)
denotes the ambient temperature at time t, then

du

dt
= k(A(t)− u(t))

for some constant k .
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Since our experience tells us that warm objects tend to cool off, we
should have k > 0, so that du

dt
is negative when u(t) > A(t).

Note that du

dt
is large (and negative) when u(t) is much larger than

A(t), and that du

dt
is small when u(t) is close to A(t).

This tells us that a heated object cools rapidly, but its temperature
approaches the ambient temperature in the long run.

Likewise, Newton’s law of cooling implies that a chilled object will
warm rapidly.

Daileda Separable Applications



Constant Ambient Temperature

If the ambient temperature is constant (e.g. a coffee cup in a room
or a turkey in an oven), then

du

dt
= k(A− u)

is separable, and easily solved.

Example 2

Coffee at 150◦F is brought into an air-conditioned room kept at
70◦F . After 15 minutes the coffee has cooled to 100◦F. Determine
the temperature of the coffee at any time after it was brought into
the room.
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Solution

Assuming the coffee cools according to Newton’s law of cooling,
its temperature u at time t minutes after it was brought into the
room satisfies

du

dt
= k(70 − u)

for some unknown k > 0.

We are also given

u(0) = 150 and u(15) = 100.

Separating variables in the ODE we obtain

∫

du

u − 70
=

∫

−k dt ⇒ ln |u − 70| = −kt + C .
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We can solve for k and C more easily if we impose our boundary
conditions now (rather than after we’ve solved for u).

Setting t = 0, u = 150 yields

ln |150 − 70| = −k · 0 + C ⇒ C = ln 80.

Setting t = 15, u = 100 yields

ln |100 − 70| = −15k + ln 80 ⇒ k =
ln 80− ln 30

15
=

ln(8/3)

15
.

Thus

ln |u−70| = −
ln(8/3)

15
t+ln80 ⇒ |u−70| = exp

(

−
ln(8/3)

15
t + ln 80

)
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⇒ u − 70 = ±e ln 80 exp

(

−
ln(8/3)

15
t

)

⇒ u = 70 + 80 exp

(

−
ln(8/3)

15
t

)

,

our choice of sign being dictated by the fact that we need
u(0) = 150.

Remark. The value of k is

k =
ln(8/3)

15
≈ 0.0653886 . . .
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Remark

In the preceding example, one can also estimate k from the data
points

u(0) = 150 and u(15) = 100

as follows:

k(70 − u) =
du

dt
≈

∆u

∆t
=

−50

15
= −

10

3
⇒ k ≈

10

3(u − 70)
.

But which u-value should we use?

The slope field suggests that du

dt
will more closely approximate ∆u

∆t

at the midpoint u = 150+100
2

= 250
2

= 125 than at either data
point.
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So we expect to have

k ≈
10

3(125 − 70)
=

10

3 · 55
=

2

33
= 0.06060606 . . .

This is reasonably close to the exact value

k = 0.0653886 . . .

found above.
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