Rational Functions and Partial Fractions Part 2

Ryan C. Daileda

Trinity University

Calculus II

Recall

Our goal is to develop a method for integrating rational functions using their partial fraction decompositions (PFDs).

In general, these have the form

$$
R(x)=\frac{P(x)}{Q(x)}=q(x)+T_{1}(x)+T_{2}(x)+\cdots+T_{n}(x)
$$

where:

- $P(x)$ and $Q(x)$ are polynomials;
- $q(x)$ is the quotient when $P(x)$ is divided by $Q(x)$;
- each $T_{i}(x)$ corresponds to one of the irreducible (linear or quadratic) factors of $Q(x)$.

If the linear factor $a x+b$ divides $Q(x)$ with multiplicity n, then the corresponding term in the PFD is

$$
T(x)=\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+\frac{A_{n}}{(a x+b)^{n}}
$$

Such terms are easy to integrate using the logarithm or the power rule.

If, however, $Q(x)$ is divisible by $a x^{2}+b x+c\left(b^{2}-4 a c<0\right)$ with multiplicity n, then we must instead include
$T(x)=\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{n} x+B_{n}}{\left(a x^{2}+b x+c\right)^{n}}$.

Examples

Write out the general form of the PFDs of the following rational functions.

$$
\begin{aligned}
& \frac{3 x}{x^{3}+1}=\frac{3 x}{(x+1)\left(x^{2}-x+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}-x+1} \\
& \frac{1}{x\left(x^{2}+4\right)^{2}}=\frac{A}{x}+\frac{B x+C}{x^{2}+4}+\frac{D x+E}{\left(x^{2}+4\right)^{2}} \\
& \frac{x^{3}}{x^{4}-1}=\frac{x^{3}}{(x-1)(x+1)\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B}{x+1}+\frac{C x+D}{x^{2}+1} \\
& \frac{3 x^{2}-2 x+1}{x^{2}(x-3)^{2}\left(x^{2}-x+5\right)^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-3}+\frac{D}{(x-3)^{2}} \\
& \quad+\frac{E x+F}{x^{2}-x+5}+\frac{G x+H}{\left(x^{2}-x+5\right)^{2}}
\end{aligned}
$$

Computing General PFDs

A general theorem in abstract algebra guarantees that PFDs of rational functions exist. The difficult part can be actually computing them.

Example 1

Find the PFD of $\frac{3 x}{x^{3}+1}$.
Solution. Since $x^{3}+1=(x+1)\left(x^{2}-x+1\right)$, the PFD has the form

$$
\begin{aligned}
\frac{3 x}{x^{3}+1} & =\frac{3 x}{(x+1)\left(x^{2}-x+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}-x+1} \\
& =\frac{A\left(x^{2}-x+1\right)+(B x+C)(x+1)}{(x+1)\left(x^{2}-x+1\right)}
\end{aligned}
$$

Equating the numerators yields

$$
3 x=A\left(x^{2}-x+1\right)+(B x+C)(x+1)
$$

Thus:

$$
\begin{aligned}
& \underline{x=-1} \Rightarrow-3=3 A \Rightarrow A=-1 \\
& \underline{x=0} \Rightarrow 0=A+C \Rightarrow C=1 \\
& \underline{x=1} \Rightarrow 3=A+2(B+C) \Rightarrow B=1 .
\end{aligned}
$$

So the PFD is

$$
\frac{3 x}{x^{3}+1}=\frac{-1}{x+1}+\frac{x+1}{x^{2}-x+1}
$$

Example 2

Find the PFD of $\frac{9(x-1)}{x^{2}\left(x^{2}+9\right)}$.

Solution. The general form of the PFD is

$$
\begin{aligned}
\frac{9(x-1)}{x^{2}\left(x^{2}+9\right)} & =\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+9} \\
& =\frac{A x\left(x^{2}+9\right)+B\left(x^{2}+9\right)+(C x+D) x^{2}}{x^{2}\left(x^{2}+9\right)}
\end{aligned}
$$

Equating the numerators gives us

$$
9(x-1)=A x\left(x^{2}+9\right)+B\left(x^{2}+9\right)+(C x+D) x^{2} .
$$

Therefore:

$$
\begin{aligned}
& \underline{x=0} \Rightarrow-9=9 B \Rightarrow B=-1 \\
& \underline{x=1} \Rightarrow 0=10 A+10 B+C+D \\
& \underline{x=-1} \Rightarrow-18=-10 A+10 B-C+D \\
& \underline{x=2} \Rightarrow 9=26 A+13 B+8 C+4 D
\end{aligned}
$$

Adding the second and the third equations yields

$$
-18=20 B+2 D=-20+2 D \Rightarrow D=1
$$

Putting $B=-1$ and $D=1$ into the second and third equations gives us

$$
\left.\begin{array}{c}
10 A+C=9 \\
26 A+8 C=18
\end{array}\right\} \Rightarrow A=1, \quad C=-1
$$

We therefore have the PFD

$$
\frac{9(x-1)}{x^{2}\left(x^{2}+9\right)}=\frac{1}{x}-\frac{1}{x^{2}}+\frac{1-x}{x^{2}+9} .
$$

Remark. We can solve for C and D more rapidly by using the complex argument $x=3 i$:
$\underline{x=3 i} \Rightarrow 9(3 i-1)=-9(3 C i+D) \Rightarrow-1+3 i=-D-3 C i$.
Because C and D are both real, this immediately tells us that $D=1$ and $C=-1$.

The first two equations (for $x=0,1$) are then sufficient to determine A and B.

Integrating General PFDs

Let's look at some examples first.

Example 3

Compute $\int \frac{9(x-1)}{x^{2}\left(x^{2}+9\right)} d x$.

Solution. Using the PFD we computed above, we have

$$
\begin{aligned}
\int \frac{9(x-1)}{x^{2}\left(x^{2}+9\right)} d x & =\int \frac{1}{x}-\frac{1}{x^{2}}+\frac{1-x}{x^{2}+9} d x \\
& =\ln |x|+\frac{1}{x}+\underbrace{\int \frac{d x}{x^{2}+9}}_{\text {use arctan }}-\underbrace{\int \frac{x}{x^{2}+9} d x}_{\text {sub. } u=x^{2}+9}
\end{aligned}
$$

The substitution $x=$ at can be used to derive the general integration formula

$$
\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C .
$$

Applying this above we find that
$\int \frac{9(x-1)}{x^{2}\left(x^{2}+9\right)} d x=\ln |x|+\frac{1}{x}+\frac{1}{3} \arctan \left(\frac{x}{3}\right)-\frac{1}{2} \ln \left(x^{2}+9\right)+C$.

Remark. We don't need absolute values in the second logarithm since $x^{2}+9$ is never negative.

Example 4

Compute $\int \frac{3 x}{x^{3}+1} d x$.

Solution. According to our work above, we have

$$
\begin{aligned}
\int \frac{3 x}{x^{3}+1} d x & =\int \frac{-1}{x+1}+\frac{x+1}{x^{2}-x+1} d x \\
& =-\ln |x+1|+\int \frac{x+1}{\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}} d x \\
& =-\ln |x+1|+4 \int \frac{x+1}{(2 x-1)^{2}+3} d x
\end{aligned}
$$

In the final step we multiplied the numerator and denominator by 4 to get rid of the fractional coefficients.

Now substitute $t=2 x-1, d t=2 d x$:

$$
\begin{aligned}
-\ln \mid x & \left.+1\left|+4 \int \frac{x+1}{(2 x-1)^{2}+3} d x=-\ln \right| x+1 \right\rvert\,+\int \frac{t+3}{t^{2}+3} d t \\
& =-\ln |x+1|+\underbrace{\int \frac{t}{t^{2}+3} d t}_{\text {sub. } u=t^{2}+3}+3 \underbrace{\int \frac{d t}{t^{2}+3}}_{\text {use arctan }} \\
& =-\ln |x+1|+\frac{1}{2} \ln \left(t^{2}+3\right)+\frac{3}{\sqrt{3}} \arctan \left(\frac{t}{\sqrt{3}}\right)+C \\
& =-\ln |x+1|+\frac{1}{2} \ln \left((2 x-1)^{2}+3\right)+\sqrt{3} \arctan \left(\frac{2 x-1}{\sqrt{3}}\right)+C \\
& =-\ln |x+1|+\frac{1}{2} \ln \left(x^{2}-x+1\right)+\sqrt{3} \arctan \left(\frac{2 x-1}{\sqrt{3}}\right)+C .
\end{aligned}
$$

Quadratic Factors in General

What about the general integration of terms in a PFD coming from irreducible quadratic factors of the denominator?
Consider $a x^{2}+b x+c$ with $b^{2}-4 a c<0$. Factor out a and complete the square:

$$
\begin{aligned}
a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right) & =a\left[\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\frac{b^{2}}{4 a^{2}}\right] \\
& =a\left[\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}}\right] .
\end{aligned}
$$

Because $\frac{4 a c-b^{2}}{4 a^{2}}$ is positive, we can set

$$
\frac{4 a c-b^{2}}{4 a^{2}}=\alpha^{2}
$$

The substitution $t=x+\frac{b}{2 a}, d t=d x$ therefore yields

$$
\begin{aligned}
\int \frac{A x+B}{\left(a x^{2}+b x+c\right)^{k}} d x & =\int \frac{A^{\prime} t+B^{\prime}}{a^{k}\left(t^{2}+\alpha^{2}\right)^{k}} d t \\
& =\frac{A^{\prime}}{a^{k}} \int \frac{t}{\left(t^{2}+\alpha^{2}\right)^{k}} d t+\frac{B^{\prime}}{a^{k}} \int \frac{d t}{\left(t^{2}+\alpha^{2}\right)^{k}}
\end{aligned}
$$

The first of these can be handled with the substitution $u=t^{2}+\alpha^{2}$.
If $k>1$, in the second we can make the trigonometric substitution $t=\alpha \tan \theta, d t=\alpha \sec ^{2} \theta:$
$\int \frac{d t}{\left(t^{2}+\alpha^{2}\right)^{k}} d t=\int \frac{\alpha \sec ^{2} \theta}{\alpha^{2 k} \sec ^{2 k} \theta} d \theta=\frac{1}{\alpha^{2 k-1}} \int \cos ^{2(k-1)} \theta d \theta$.

This even power of cosine can now be integrated by repeated application of the half-angle formula

$$
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}
$$

After integration, this will yield terms involving

$$
\cos 2^{m} \theta \quad \text { and } \sin 2^{m} \theta
$$

These can be expressed in terms of $\cos \theta$ and $\sin \theta$ (and hence t) by repeatedly using the double-angle formulas

$$
\begin{aligned}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
\sin 2 \theta & =2 \cos \theta \sin \theta
\end{aligned}
$$

Examples

Example 5

Compute $\int \frac{d x}{\left(x^{2}+4\right)^{3}}$.

Solution. Setting $x=2 \tan \theta$ and $d x=2 \sec ^{2} \theta d \theta$, we have

$$
\begin{aligned}
\int \frac{d x}{\left(x^{2}+4\right)^{3}} & =\int \frac{2 \sec ^{2} \theta}{4^{3} \sec ^{6} \theta} d \theta=\frac{1}{32} \int \cos ^{4} \theta d \theta \\
& =\frac{1}{32} \int\left(\frac{1+\cos 2 \theta}{2}\right)^{2} d \theta \\
& =\frac{1}{128} \int 1+2 \cos 2 \theta+\cos ^{2} 2 \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{128}\left(\theta+\sin 2 \theta+\frac{1}{2} \int 1+\cos 4 \theta d \theta\right) \\
& =\frac{1}{128}\left(\frac{3 \theta}{2}+\sin 2 \theta+\frac{\sin 4 \theta}{8}\right)+C \\
& =\frac{1}{128}\left(\frac{3 \theta}{2}+2 \sin \theta \cos \theta+\frac{\sin 2 \theta \cos 2 \theta}{4}\right)+C \\
& =\frac{1}{128}\left(\frac{3 \theta}{2}+2 \sin \theta \cos \theta+\frac{(2 \sin \theta \cos \theta)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{4}\right)+C .
\end{aligned}
$$

If we use the relationship $\tan \theta=\frac{x}{2}$ to draw a right triangle, we find that

$$
\sin \theta=\frac{x}{\sqrt{x^{2}+4}} \quad \text { and } \quad \cos \theta=\frac{2}{\sqrt{x^{2}+4}}
$$

Substituting these into our result and simplifying we obtain

$$
\int \frac{d x}{\left(x^{2}+4\right)^{3}}=\frac{x}{16\left(x^{2}+4\right)^{2}}+\frac{3 x}{128\left(x^{2}+4\right)}+\frac{3}{256} \arctan \left(\frac{x}{2}\right)+C .
$$

\square

Remark. Another approach is to repeatedly use the reduction formula

$$
\begin{aligned}
\int \frac{d x}{\left(x^{2}+a^{2}\right)^{n}}= & \frac{x}{2 a^{2}(n-1)\left(x^{2}+a^{2}\right)^{n-1}} \\
& +\frac{1}{a^{2}}\left(1-\frac{1}{2(n-1)}\right) \int \frac{d x}{\left(x^{2}+a^{2}\right)^{n-1}}(n>1)
\end{aligned}
$$

which can be proven using integration by parts.

With $a=2$ and $n=3$ it yields

$$
\int \frac{d x}{\left(x^{2}+4\right)^{3}}=\frac{x}{16\left(x^{2}+4\right)^{2}}+\frac{1}{4}\left(1-\frac{1}{4}\right) \int \frac{d x}{\left(x^{2}+4\right)^{2}}
$$

Now taking $n=2$ we have

$$
\begin{aligned}
& =\frac{x}{16\left(x^{2}+4\right)^{2}}+\frac{3}{16}\left(\frac{x}{8\left(x^{2}+4\right)}+\frac{1}{4}\left(1-\frac{1}{2}\right) \int \frac{d x}{x^{2}+4}\right) \\
& =\frac{x}{16\left(x^{2}+4\right)^{2}}+\frac{3 x}{128\left(x^{2}+4\right)}+\frac{3}{256} \arctan \left(\frac{x}{2}\right)+C,
\end{aligned}
$$

in agreement with our previous result.

