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Recall

Our goal is to develop a method for integrating rational functions
using their partial fraction decompositions (PFDs).

In general, these have the form

P(x) _

R(x) = )

q(x) + Ta(x) + To(x) + -+ + Ta(x),

where:

@ P(x) and Q(x) are polynomials;
@ g(x) is the quotient when P(x) is divided by Q(x);

@ each T;(x) corresponds to one of the irreducible (linear or
quadratic) factors of Q(x).
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If the linear factor ax + b divides Q(x) with multiplicity n, then
the corresponding term in the PFD is
Ar A An
T(x) = AL R
iy S oy AR AT

Such terms are easy to integrate using the logarithm or the power
rule.

If, however, Q(x) is divisible by ax? + bx + ¢ (b? — 4ac < 0) with
multiplicity n, then we must instead include

Aix + By Aox + B> n Apx + B,
ax2+ bx+c  (ax®+ bx + ¢)? (ax? + bx +¢c)"

T(x) =
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SETES

Write out the general form of the PFDs of the following rational
functions.

3x 3x A n Bx+ C
B+l (x+1)(x2—x+1) x+1 x2—x+1

1 A Bx+C Dx + E

x(x% + 4)? _;—i_ x2+4 +(X2—|—4)2

x3 B x3 A . B +CX—I—D
XA =1 (x—Dx+1)(x2+1) x—-1 x+1 x2+4+1

3x* —2x + 1 A B C D
=24+ +
x2(x —3)?(x2—=x+5)? x x> x—-3 (x—3)?

Ex+ F n Gx+H
x2—x+5 (x>—x+5)?
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Computing General PFDs

A general theorem in abstract algebra guarantees that PFDs of
rational functions exist. The difficult part can be actually
computing them.

3x

Find the PFD of .
x34+1

Solution. Since x3+1 = (x+1)(x? — x+1), the PFD has the form

3x 3x A Bx + C

B+l (x+1)(x2—x+1) x+1+x2—x—|—1

AP —x+1)+ (Bx+ CO)(x+ 1)
N (x+1)(x2—x+1) ’
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Equating the numerators yields

3x = A(x* — x + 1) + (Bx + C)(x + 1).

Thus:
x=-1 = -3=3A = A=-1,
x=0 = 0=A+C = C=1,
x=1 = 3=A+2B+C) = B=1
So the PFD is

3x _ —1 n x+1
x34+1 x+4+1 x2—x+17

O
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9(x —1)

Fi he PFD of —————~%.
ind the o] x2(x2 +9)

Solution. The general form of the PFD is

ox-1) _A, B Cx+D
x2(x24+9)  x  x2 x2+9
Ax(x? +9) + B(x? +9) + (Cx + D)x?
x?(x2+9)

Equating the numerators gives us

9(x — 1) = Ax(x* 4+ 9) + B(x*> +9) + (Cx + D)x%.
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Therefore:

X

0 = -9=9B = B=-1,
=

1 0=10A+10B + C + D,

X

x=-1 = —-18=-10A+10B-C+D,
x=2 = 9=206A+13B+8C +4D.

Adding the second and the third equations yields
-18=20B+2D=-20+2D = D=1

Putting B = —1 and D =1 into the second and third equations

gives us
10A+C=9

= A=1 C=-1.
26A+8C =18
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We therefore have the PFD

9(x — 1) 1 1 1—x

X2(x2+9) x x2 x2+9]

Remark. We can solve for C and D more rapidly by using the
complex argument x = 3i:

x=3i = 9(3i—1)=-93Ci+D) = —1+3i=-D—3Ci.

Because C and D are both real, this immediately tells us that
D=1and C =-1.

The first two equations (for x = 0, 1) are then sufficient to
determine A and B.
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Integrating General PFDs

Let's look at some examples first.

-1
Compute /de.

x2(x2+9)

Solution. Using the PFD we computed above, we have

9(x — 1) (1 1 1—x
/X2(X2+9)dx_/;_;+x2+9dx

—In|x|+1+/L—/de
N X x2+9 x24+9

use arctan sub. u=x2+49
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The substitution x = at can be used to derive the general
integration formula

dx 1 X
——— = —arctan (—) + C|.
X<+ a a a

Applying this above we find that

9(X_1) 1 1 X 1 2
/mdx: In|x|+;+§arctan(§)_§|n(x —I—9)—|—C.

O

Remark. We don't need absolute values in the second logarithm
since x2 + 9 is never negative.
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Example 4

3x
Compute /X3—+1dx.

Solution. According to our work above, we have

/ 3x d / -1 n x+1 d
—— ax = X
x3+1 x+1 x2-—x+1

1
:—In|x+1|+/(de

D

x+1
_— rd | 2T g
nx 41+ /(2x—1)2+3 X

In the final step we multiplied the numerator and denominator by 4
to get rid of the fractional coefficients.

[DEHIELE] Partial Fractions 2



Now substitute t = 2x — 1, dt = 2dx:

x+1 t+3
—1 114+4 | ————dx= —1 1 ———dt
nix + 1] + /(2x—1)2+3 x n|x+ ‘+/t2+3

t dt

- 1+ [ ———dt L
e+ ‘+/t2+3 +3/t2+3
—_— —

sub. u=t243 use arctan

3 t
—1In x+1+ |nt + 3) + —= arctan + C
| | ( ) V3 <ﬁ>

1 2x — 1
—In|x + 1]+ ZIn((2x — 1) + 3) + V3arctan <7>+C

2x — 1
= Inx—i—l—i— |nx—x—i—1 +\/§arctan<7>+C.
x + 1] ( ) /3
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Quadratic Factors in General

What about the general integration of terms in a PFD coming
from irreducible quadratic factors of the denominator?
Consider ax? + bx + ¢ with b?> — 4ac < 0. Factor out a and

complete the square:
b 2 I b?
X _ —_——
2a a 422

(#+3+5)
a(x+—-x+-—-\]=a
a a
x+£ 24_4ac—b2
2a 432 '

=a

—_p2 . o
Because % is positive, we can set
4ac — b? 5
Tz Y
4a
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The substitution t = x + 2—’;, dt = dx therefore yields
/ Ax+ B / A't+ B’
dx = | ———dt
(ax? + bx + c)k ak(t2 + a?)k

B A’/ t dt+5,/ dt
- ak (t2+0é2)k ak (t2+a2)k'

The first of these can be handled with the substitution u = t2 + 2.

If Kk > 1, in the second we can make the trigonometric substitution
t = atan, dt = asec?6:

dt asec? 1 k-1
a4t = | g 90 = ey [ cos? TV 00,
(t> + a?) a’k sec?k § a
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This even power of cosine can now be integrated by repeated
application of the half-angle formula

1+ cos 260

2
9 =
Ccos 5

After integration, this will yield terms involving
cos2™0 and sin2Mf.

These can be expressed in terms of cos@ and sinf (and hence t)
by repeatedly using the double-angle formulas

cos 20 = cos®  — sin® 0,
sin20 = 2cosfsinf.
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Compute /(L

x? +4)3

Solution. Setting x = 2tan6 and dx = 2sec? 6 df, we have
dx 2sec? 6 1
— = ————df = *0do
/ (x244)3 / 43 sect 0 32/«

1 1 2
_ 1 + cos 260 4o
32 2

1

128 1+ 2cos 26 + cos? 26 db
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:i <9+sin29+%/1+cos49d9>

+sin 26 4+ Sm849> + C

30

2

% +2sin9cos¢9+75m29(:0529> + C
2 4

ﬁ

2

+ 2sinfcosf +

2sinf cosd 20 —sin%0
(25sin 0 cos )(Zos sin )> Lc

If we use the relationship tan = 3 to draw a right triangle, we

find that
X 2
sinf = ——— and cosf = ——.
Vx2 4+ 4 x2 + 4
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Substituting these into our result and simplifying we obtain

/ & _ X + 3x + 3 arctan (§> +C
(x®+4) |16(x*+4)? ' 128(x>+4) ' 256 2 '

O

Remark. Another approach is to repeatedly use the reduction
formula

/ dx B X
(x2 +a2)"  2a22(n—1)(x2 + a?)n1

+ (1 B 2(n1— 1)> / 2 +d:2)n—1 (n>1),

which can be proven using integration by parts.
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With a =2 and n = 3 it yields

/ (x2cf4)3 B 16(x2x+ " % (1 - %> / ﬁ

Now taking n = 2 we have

_ox 3 x 11 /L
C16(x2+4)2 16 \8(x2+4) 4 2 x2+4
X 3x

3
= t
16(x2+ 42 " 128(x2 +4) 256 " (

;)+C,

in agreement with our previous result.
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