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Recall

Our goal is to develop a method for integrating rational functions
using their partial fraction decompositions (PFDs).

In general, these have the form

R(x) =
P(x)

Q(x)
= q(x) + T1(x) + T2(x) + · · · + Tn(x),

where:

P(x) and Q(x) are polynomials;

q(x) is the quotient when P(x) is divided by Q(x);

each Ti(x) corresponds to one of the irreducible (linear or
quadratic) factors of Q(x).
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If the linear factor ax + b divides Q(x) with multiplicity n, then
the corresponding term in the PFD is

T (x) =
A1

ax + b
+

A2

(ax + b)2
+ · · ·+ An

(ax + b)n
.

Such terms are easy to integrate using the logarithm or the power
rule.

If, however, Q(x) is divisible by ax2 + bx + c (b2 − 4ac < 0) with
multiplicity n, then we must instead include

T (x) =
A1x + B1

ax2 + bx + c
+

A2x + B2

(ax2 + bx + c)2
+ · · ·+ Anx + Bn

(ax2 + bx + c)n
.
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Examples

Write out the general form of the PFDs of the following rational
functions.

3x

x3 + 1
=

3x

(x + 1)(x2 − x + 1)
=

A

x + 1
+

Bx + C

x2 − x + 1

1

x(x2 + 4)2
=

A

x
+

Bx + C

x2 + 4
+

Dx + E

(x2 + 4)2

x3

x4 − 1
=

x3

(x − 1)(x + 1)(x2 + 1)
=

A

x − 1
+

B

x + 1
+

Cx + D

x2 + 1

3x2 − 2x + 1

x2(x − 3)2(x2 − x + 5)2
=

A

x
+

B

x2
+

C

x − 3
+

D

(x − 3)2

+
Ex + F

x2 − x + 5
+

Gx + H

(x2 − x + 5)2
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Computing General PFDs

A general theorem in abstract algebra guarantees that PFDs of
rational functions exist. The difficult part can be actually
computing them.

Example 1

Find the PFD of
3x

x3 + 1
.

Solution. Since x3+1 = (x +1)(x2− x +1), the PFD has the form

3x

x3 + 1
=

3x

(x + 1)(x2 − x + 1)
=

A

x + 1
+

Bx + C

x2 − x + 1

=
A(x2 − x + 1) + (Bx + C )(x + 1)

(x + 1)(x2 − x + 1)
.
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Equating the numerators yields

3x = A(x2 − x + 1) + (Bx + C )(x + 1).

Thus:
x = −1 ⇒ −3 = 3A ⇒ A = −1,

x = 0 ⇒ 0 = A+ C ⇒ C = 1,

x = 1 ⇒ 3 = A+ 2(B + C ) ⇒ B = 1.

So the PFD is

3x

x3 + 1
=

−1

x + 1
+

x + 1

x2 − x + 1
.
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Example 2

Find the PFD of
9(x − 1)

x2(x2 + 9)
.

Solution. The general form of the PFD is

9(x − 1)

x2(x2 + 9)
=

A

x
+

B

x2
+

Cx + D

x2 + 9

=
Ax(x2 + 9) + B(x2 + 9) + (Cx +D)x2

x2(x2 + 9)

Equating the numerators gives us

9(x − 1) = Ax(x2 + 9) + B(x2 + 9) + (Cx +D)x2.
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Therefore:

x = 0 ⇒ −9 = 9B ⇒ B = −1,

x = 1 ⇒ 0 = 10A + 10B + C + D,

x = −1 ⇒ −18 = −10A + 10B − C + D,

x = 2 ⇒ 9 = 26A + 13B + 8C + 4D.

Adding the second and the third equations yields

−18 = 20B + 2D = −20 + 2D ⇒ D = 1.

Putting B = −1 and D = 1 into the second and third equations
gives us

10A+ C = 9

26A + 8C = 18

}

⇒ A = 1, C = −1.
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We therefore have the PFD

9(x − 1)

x2(x2 + 9)
=

1

x
− 1

x2
+

1− x

x2 + 9
.

Remark. We can solve for C and D more rapidly by using the
complex argument x = 3i :

x = 3i ⇒ 9(3i − 1) = −9(3Ci + D) ⇒ −1 + 3i = −D − 3Ci .

Because C and D are both real, this immediately tells us that
D = 1 and C = −1.

The first two equations (for x = 0, 1) are then sufficient to
determine A and B .
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Integrating General PFDs

Let’s look at some examples first.

Example 3

Compute

∫
9(x − 1)

x2(x2 + 9)
dx .

Solution. Using the PFD we computed above, we have

∫
9(x − 1)

x2(x2 + 9)
dx =

∫
1

x
− 1

x2
+

1− x

x2 + 9
dx

= ln |x |+ 1

x
+

∫
dx

x2 + 9
︸ ︷︷ ︸

use arctan

−
∫

x

x2 + 9
dx

︸ ︷︷ ︸

sub. u=x2+9

.
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The substitution x = at can be used to derive the general
integration formula

∫
dx

x2 + a2
=

1

a
arctan

(x

a

)

+ C .

Applying this above we find that

∫
9(x − 1)

x2(x2 + 9)
dx = ln |x |+ 1

x
+

1

3
arctan

(x

3

)

− 1

2
ln(x2 + 9) + C .

Remark. We don’t need absolute values in the second logarithm
since x2 + 9 is never negative.
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Example 4

Compute

∫
3x

x3 + 1
dx .

Solution. According to our work above, we have

∫
3x

x3 + 1
dx =

∫ −1

x + 1
+

x + 1

x2 − x + 1
dx

= − ln |x + 1|+
∫

x + 1
(
x − 1

2

)2
+ 3

4

dx

= − ln |x + 1|+ 4

∫
x + 1

(2x − 1)2 + 3
dx .

In the final step we multiplied the numerator and denominator by 4
to get rid of the fractional coefficients.
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Now substitute t = 2x − 1, dt = 2dx :

− ln|x + 1|+ 4

∫
x + 1

(2x − 1)2 + 3
dx = − ln |x + 1|+

∫
t + 3

t2 + 3
dt

= − ln |x + 1|+
∫

t

t2 + 3
dt

︸ ︷︷ ︸

sub. u=t2+3

+ 3

∫
dt

t2 + 3
︸ ︷︷ ︸

use arctan

= − ln |x + 1|+ 1

2
ln(t2 + 3) +

3√
3
arctan

(
t√
3

)

+ C

= − ln |x + 1|+ 1

2
ln
(
(2x − 1)2 + 3

)
+

√
3 arctan

(
2x − 1√

3

)

+ C

= − ln |x + 1|+ 1

2
ln
(
x2 − x + 1

)
+

√
3 arctan

(
2x − 1√

3

)

+ C .
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Quadratic Factors in General

What about the general integration of terms in a PFD coming
from irreducible quadratic factors of the denominator?

Consider ax2 + bx + c with b2 − 4ac < 0. Factor out a and
complete the square:

a

(

x2 +
b

a
x +

c

a

)

= a

[(

x +
b

2a

)2

+
c

a
− b2

4a2

]

= a

[(

x +
b

2a

)2

+
4ac − b2

4a2

]

.

Because 4ac−b
2

4a2
is positive, we can set

4ac − b2

4a2
= α2.
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The substitution t = x + b

2a , dt = dx therefore yields

∫
Ax + B

(ax2 + bx + c)k
dx =

∫
A′t + B ′

ak(t2 + α2)k
dt

=
A′

ak

∫
t

(t2 + α2)k
dt +

B ′

ak

∫
dt

(t2 + α2)k
.

The first of these can be handled with the substitution u = t2+α2.

If k > 1, in the second we can make the trigonometric substitution
t = α tan θ, dt = α sec2 θ:

∫
dt

(t2 + α2)k
dt =

∫
α sec2 θ

α2k sec2k θ
dθ =

1

α2k−1

∫

cos2(k−1) θ dθ.
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This even power of cosine can now be integrated by repeated
application of the half-angle formula

cos2 θ =
1 + cos 2θ

2
.

After integration, this will yield terms involving

cos 2mθ and sin 2mθ.

These can be expressed in terms of cos θ and sin θ (and hence t)
by repeatedly using the double-angle formulas

cos 2θ = cos2 θ − sin2 θ,

sin 2θ = 2cos θ sin θ.
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Examples

Example 5

Compute

∫
dx

(x2 + 4)3
.

Solution. Setting x = 2 tan θ and dx = 2 sec2 θ dθ, we have

∫
dx

(x2 + 4)3
=

∫
2 sec2 θ

43 sec6 θ
dθ =

1

32

∫

cos4 θ dθ

=
1

32

∫ (
1 + cos 2θ

2

)2

dθ

=
1

128

∫

1 + 2 cos 2θ + cos2 2θ dθ
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=
1

128

(

θ + sin 2θ +
1

2

∫

1 + cos 4θ dθ

)

=
1

128

(
3θ

2
+ sin 2θ +

sin 4θ

8

)

+ C

=
1

128

(
3θ

2
+ 2 sin θ cos θ +

sin 2θ cos 2θ

4

)

+ C

=
1

128

(
3θ

2
+ 2 sin θ cos θ +

(2 sin θ cos θ)(cos2 θ − sin2 θ)

4

)

+ C .

If we use the relationship tan θ = x

2 to draw a right triangle, we
find that

sin θ =
x√

x2 + 4
and cos θ =

2√
x2 + 4

.
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Substituting these into our result and simplifying we obtain

∫
dx

(x2 + 4)3
=

x

16(x2 + 4)2
+

3x

128(x2 + 4)
+

3

256
arctan

(x

2

)

+ C .

Remark. Another approach is to repeatedly use the reduction

formula
∫

dx

(x2 + a2)n
=

x

2a2(n − 1)(x2 + a2)n−1

+
1

a2

(

1− 1

2(n − 1)

)∫
dx

(x2 + a2)n−1
(n > 1),

which can be proven using integration by parts.
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With a = 2 and n = 3 it yields

∫
dx

(x2 + 4)3
=

x

16(x2 + 4)2
+

1

4

(

1− 1

4

) ∫
dx

(x2 + 4)2
.

Now taking n = 2 we have

=
x

16(x2 + 4)2
+

3

16

(
x

8(x2 + 4)
+

1

4

(

1− 1

2

) ∫
dx

x2 + 4

)

=
x

16(x2 + 4)2
+

3x

128(x2 + 4)
+

3

256
arctan

(x

2

)

+ C ,

in agreement with our previous result.
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