

LINEAR ALGEBRA Spring 2021 Assignment 11.2 Due April 21

Exercise 1. Let $a \in \mathbb{R}$ and define $E_a : \mathbb{R}[X] \to \mathbb{R}$ by $E_a(f(X)) = f(a)$. Determine ker E_a and im E_a . Is E_a one-to-one? Onto?

Exercise 2. Given distinct $a_1, a_2, \ldots, a_n \in \mathbb{R}$, define $T : \mathbb{R}[X] \to \mathbb{R}^n$ by

T(f(X)) =	$\begin{pmatrix} f(a_1) \\ f(a_2) \end{pmatrix}$	
	$\left(\begin{array}{c} \vdots \\ f(a_n) \end{array}\right)$	•

It is not hard to show that T is a linear transformation.

- **a.** Determine ker T and im T. Is T one-to-one? Onto?
- **b.** Suppose we replace the domain of T by \mathbb{P}_m . What happens to ker T and im T? Your answer should depend on m and n.

Exercise 3. Let $\mathbb{R}^{\mathbb{N}}$ denote the vector space of all sequences of real numbers, and define the *shift operators* $L, R : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ by

 $L(\{a_1, a_2, a_3, \ldots\}) = \{a_2, a_3, a_4, \ldots\}$ and $R(\{a_1, a_2, a_3, \ldots\}) = \{0, a_1, a_2, a_3, \ldots\},\$

which we know to be linear transformations.

- **a.** Compute the kernel and image of L and R.
- **b.** Show that L is onto but not one-to-one, and that R is one-to-one but not onto. Conclude that $\mathbb{R}^{\mathbb{N}}$ cannot be finite dimensional.

Exercise 4. Let V and W be vector spaces and set

$$\mathcal{F}(V,W) = \{T: V \to W\}$$

 $Hom(V, W) = \{T : V \to W \mid T \text{ is a linear transformation}\}.$

Show that

$$\operatorname{Hom}(V, W) \le \mathcal{F}(V, W),$$

where the operations in $\mathcal{F}(V, W)$ are pointwise.