Exercise 1. Let $a \in \mathbb{R}$ and define $E_{a}: \mathbb{R}[X] \rightarrow \mathbb{R}$ by $E_{a}(f(X))=f(a)$. Determine ker E_{a} and $\operatorname{im} E_{a}$. Is E_{a} one-to-one? Onto?

Exercise 2. Given distinct $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$, define $T: \mathbb{R}[X] \rightarrow \mathbb{R}^{n}$ by

$$
T(f(X))=\left(\begin{array}{c}
f\left(a_{1}\right) \\
f\left(a_{2}\right) \\
\vdots \\
f\left(a_{n}\right)
\end{array}\right)
$$

It is not hard to show that T is a linear transformation.
a. Determine $\operatorname{ker} T$ and $\operatorname{im} T$. Is T one-to-one? Onto?
b. Suppose we replace the domain of T by \mathbb{P}_{m}. What happens to $\operatorname{ker} T$ and $\operatorname{im} T$? Your answer should depend on m and n.

Exercise 3. Let $\mathbb{R}^{\mathbb{N}}$ denote the vector space of all sequences of real numbers, and define the shift operators $L, R: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ by

$$
L\left(\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}\right)=\left\{a_{2}, a_{3}, a_{4}, \ldots\right\} \quad \text { and } \quad R\left(\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}\right)=\left\{0, a_{1}, a_{2}, a_{3}, \ldots\right\},
$$

which we know to be linear transformations.
a. Compute the kernel and image of L and R.
b. Show that L is onto but not one-to-one, and that R is one-to-one but not onto. Conclude that $\mathbb{R}^{\mathbb{N}}$ cannot be finite dimensional.

Exercise 4. Let V and W be vector spaces and set

$$
\begin{aligned}
\mathcal{F}(V, W) & =\{T: V \rightarrow W\}, \\
\operatorname{Hom}(V, W) & =\{T: V \rightarrow W \mid T \text { is a linear transformation }\} .
\end{aligned}
$$

Show that

$$
\operatorname{Hom}(V, W) \leq \mathcal{F}(V, W),
$$

where the operations in $\mathcal{F}(V, W)$ are pointwise.

