Exercise 1. Let

$$
A=\left(\begin{array}{cc}
-3 & 1 \\
2 & 4
\end{array}\right)
$$

Use the linear transformation $B \mapsto A B-B A$ to find a basis for the subspace

$$
H_{A}=\left\{B \in M_{2}(\mathbb{R}) \mid A B=B A\right\}
$$

of $M_{2}(\mathbb{R})$, as we did in class. Is it true that

$$
H_{A}=\operatorname{Span}\left\{I, A, A^{2}, A^{3}, \ldots\right\} ?
$$

Exercise 2. For $a, b \in \mathbb{R}$ with $b \neq 0$, let

$$
V_{n}(a, b)=\left\{e^{a x}(p(x) \cos b x+q(x) \sin b x) \mid p(x), q(x) \in \mathbb{P}_{n}\right\}
$$

which we know to be a subspace of $C^{1}(\mathbb{R})$.
a. If $f(x)=e^{a x}(p(x) \cos b x+q(x) \sin b x) \in V_{n}(a, b)$, show that

$$
\frac{d f}{d x}=e^{a x}\left(\left(a \cdot p(x)+p^{\prime}(x)+b \cdot q(x)\right) \cos b x+\left(a \cdot q(x)+q^{\prime}(x)-b \cdot p(x)\right) \sin b x\right)
$$

Conclude that $\frac{d}{d x}$ is an endomorphism of $V_{n}(a, b)$, i.e. is a linear transformation whose domain and codomain are both equal to $V_{n}(a, b)$.
b. We have seen that

$$
\mathcal{B}=\left\{e^{a x} x^{j} \cos b x \mid 0 \leq j \leq n\right\} \cup\left\{e^{a x} x^{j} \sin b x \mid 0 \leq j \leq n\right\}
$$

is a basis for $V_{n}(a, b)$. Order \mathcal{B} as follows:

$$
e^{a x} \cos b x, e^{a x} \sin b x, e^{a x} x \cos b x, e^{a x} x \sin b x, \ldots, e^{a x} x^{j} \cos b x, e^{a x} x^{j} \sin b x, \ldots
$$

Compute the matrix for $\frac{d}{d x}$ relative to \mathcal{B} (in this order).
c. Use the result of part \mathbf{b} to conclude that $\frac{d}{d x}$ is invertible on $V_{n}(a, b)$. Explain why this proves that every $f(x) \in V_{n}(a, b)$ has a unique antiderivative in $V_{n}(a, b)$.
d. Invert the matrix you found in part \mathbf{b} in the case $n=1$. Use this to compute

$$
\int e^{a x}((x+1) \cos b x+(2 x-1) \sin b x) d x
$$

via matrix multiplication.

