Assignment 12.2

Exercise 1. Let $\alpha=a+b i \in \mathbb{C}$. Define $T_{\alpha}: \mathbb{C} \rightarrow \mathbb{C}$ by $T_{\alpha}(z)=\alpha z$.
a. Prove that T_{α} is an \mathbb{R}-linear transformation.
b. Find the matrix for T_{α} relative to the basis $\mathcal{B}=\{1, i\}$.
c. Suppose $\alpha \in \mathbb{R}$. Show that $\left[T_{\alpha}\right]$ is a scalar matrix.
d. Suppose $|\alpha|=\sqrt{a^{2}+b^{2}}=1$. Show that $\left[T_{\alpha}\right]$ is a rotation matrix.
e. Suppose $\alpha \neq 0$. Since $\alpha=|\alpha| \cdot \frac{\alpha}{|\alpha|}$, it follows that $T_{\alpha}=T_{|\alpha|} \circ T_{\alpha /|\alpha|}$. Use this fact and parts \mathbf{c} and \mathbf{d} to give a geometric description of multiplication by α.

Exercise 2. Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{M}_{2}(\mathbb{R})
$$

be a fixed 2×2 matrix and define $T_{A}: \mathrm{M}_{2}(\mathbb{R}) \rightarrow \mathrm{M}_{2}(\mathbb{R})$ by $T_{A}(B)=A B$.
a. Show that T_{A} is a linear transformation.
b. Let $\mathcal{B}=\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}$, where $E_{i j}$ has a 1 in the $i j$-entry, and zeros elsewhere. Find the matrix for T_{A} relative to \mathcal{B}.
c. Generalize part b to square matrices of arbitrary size, i.e. take $A \in \mathrm{M}_{n}(\mathbb{R})$ instead.

