Linear Algebra
Assignment 13.1
Spring 2021

Exercise 1. Let $\mathbb{R}^{\mathbb{N}}$ denote the vector space of all sequences with real entries, let $a, b \in \mathbb{R}$, and define $T: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ by

$$
T\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)=\left\{x_{n+2}-a x_{n+1}-b x_{n}\right\}_{n=1}^{\infty}=\left(L^{2}-a L-b I\right)\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right),
$$

where L is the left shift operator defined previously.
a. Show that T is a linear transformation.
b. Show that $\left\{x_{n}\right\} \in \operatorname{ker} T$ if and only if $x_{n+2}=a x_{n+1}+b x_{n}$ for all $n \geq 1$.
c. Show that $\operatorname{dim} \operatorname{ker} T=2$. [Suggestion. Show that any sequence satisfying the conditions of part \mathbf{b} is completely determined by its first two terms.]

Exercise 2. Let T be as in the preceding exercise. The characteristic polynomial of T is

$$
f(X)=X^{2}-a X-b .
$$

a. If $r \in \mathbb{R}$ is a root of $f(X)$, show that $\left\{r^{n-1}\right\}_{n=1}^{\infty} \in \operatorname{ker} T$. [Suggestion. Multiply the relationship $f(r)=0$ by r^{n} and use part \mathbf{b} above.]
b. If r_{1} and r_{2} are distinct real numbers, show that the sequences $\left\{r_{1}^{n-1}\right\}$ and $\left\{r_{2}^{n-1}\right\}$ are linearly independent.
c. If $r_{1} \neq r_{2}$ are both real roots of $f(X)$, use part \mathbf{c} above to show that

$$
\operatorname{ker} T=\operatorname{Span}\left\{\left\{r_{1}^{n-1}\right\},\left\{r_{2}^{n-1}\right\}\right\}
$$

Exercise 3. The Fibonacci numbers are the terms of the sequence $\left\{F_{n}\right\}$ defined by $F_{1}=1$, $F_{2}=1$, and

$$
F_{n+2}=F_{n+1}+F_{n} \quad \text { for } n \geq 1 .
$$

a. Use the result of part \mathbf{c} above to find constants $a_{1}, a_{2} \in \mathbb{R}$ so that

$$
F_{n}=a_{1} r_{1}^{n-1}+a_{2} r_{2}^{n-1} \text { for all } n \geq 1,
$$

where r_{1}, r_{2} are the roots of the characteristic polynomial

$$
f(X)=X^{2}-X-1
$$

b. Derive the formula

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

