

LINEAR ALGEBRA Spring 2021 Assignment 13.2 Due May 5

Exercise 1. Let

$$\mathcal{B} = \left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\} \text{ and } \mathcal{C} = \left\{ \begin{pmatrix} -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$$

Compute $[I]^{\mathcal{C}}_{\mathcal{B}}$ and $[I]^{\mathcal{B}}_{\mathcal{C}}$ by hand without using row reduction.

Exercise 2. Let

$$\mathcal{B} = \left\{ \begin{pmatrix} -4\\2\\-2 \end{pmatrix}, \begin{pmatrix} 2\\2\\2 \end{pmatrix}, \begin{pmatrix} -3\\-2\\-2 \end{pmatrix} \right\} \text{ and } \mathcal{C} = \left\{ \begin{pmatrix} -5\\-2\\1 \end{pmatrix}, \begin{pmatrix} 2\\-2\\3 \end{pmatrix}, \begin{pmatrix} 0\\3\\-3 \end{pmatrix} \right\}$$

Compute $[I]_{\mathcal{B}}^{\mathcal{C}}$ and $[I]_{\mathcal{C}}^{\mathcal{B}}$.

Exercise 3. Let

$$A = \begin{pmatrix} -1 & 1\\ 1 & 1 \end{pmatrix},$$

and define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$. Use change of basis matrices to compute the matrix for T relative to the basis

$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\ 1+\sqrt{2} \end{pmatrix}, \begin{pmatrix} 1\\ 1-\sqrt{2} \end{pmatrix} \right\}.$$

[Suggestion: You can speed up your computations by setting $\alpha = 1 + \sqrt{2}$, $\beta = 1 - \sqrt{2}$, and then noting that

$$(X - \alpha)(X - \beta) = X^2 - 2X - 1.$$

This gives several useful algebraic relationships between α and β .]

Exercise 4. Let $T_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be (counterclockwise) rotation about the origin by θ radians. What happens if you compute the matrix for T_{θ} relative to the *complex* basis¹

$$\mathcal{C} = \left\{ \begin{pmatrix} i \\ 1 \end{pmatrix}, \begin{pmatrix} -i \\ 1 \end{pmatrix} \right\}?$$

[Suggestion. Remember Euler's formula, $e^{i\theta} = \cos \theta + i \sin \theta$.]

¹We can extend any linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ to a linear transformation $\widehat{T} : \mathbb{C}^n \to \mathbb{C}^m$ of *complex* vector spaces by simply viewing the standard matrix for T as an element of $M_{m \times n}(\mathbb{C})$.