Exercise 1. Let

$$
\mathcal{B}=\left\{\binom{2}{-1},\binom{-1}{2}\right\} \quad \text { and } \quad \mathcal{C}=\left\{\binom{-1}{3},\binom{0}{1}\right\} .
$$

Compute $[I]_{\mathcal{B}}^{\mathcal{C}}$ and $[I]_{\mathcal{C}}^{\mathcal{B}}$ by hand without using row reduction.

Exercise 2. Let

$$
\mathcal{B}=\left\{\left(\begin{array}{c}
-4 \\
2 \\
-2
\end{array}\right),\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right),\left(\begin{array}{l}
-3 \\
-2 \\
-2
\end{array}\right)\right\} \quad \text { and } \quad \mathcal{C}=\left\{\left(\begin{array}{c}
-5 \\
-2 \\
1
\end{array}\right),\left(\begin{array}{c}
2 \\
-2 \\
3
\end{array}\right),\left(\begin{array}{c}
0 \\
3 \\
-3
\end{array}\right)\right\} .
$$

Compute $[I]_{\mathcal{B}}^{\mathcal{C}}$ and $[I]_{\mathcal{C}}^{\mathcal{B}}$.

Exercise 3. Let

$$
A=\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)
$$

and define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$. Use change of basis matrices to compute the matrix for T relative to the basis

$$
\mathcal{B}=\left\{\binom{1}{1+\sqrt{2}},\binom{1}{1-\sqrt{2}}\right\} .
$$

[Suggestion: You can speed up your computations by setting $\alpha=1+\sqrt{2}, \beta=1-\sqrt{2}$, and then noting that

$$
(X-\alpha)(X-\beta)=X^{2}-2 X-1
$$

This gives several useful algebraic relationships between α and β.]

Exercise 4. Let $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be (counterclockwise) rotation about the origin by θ radians. What happens if you compute the matrix for T_{θ} relative to the complex basis ${ }^{1}$

$$
\mathcal{C}=\left\{\binom{i}{1},\binom{-i}{1}\right\} ?
$$

[Suggestion. Remember Euler's formula, $e^{i \theta}=\cos \theta+i \sin \theta$.]

[^0]
[^0]: ${ }^{1}$ We can extend any linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to a linear transformation $\widehat{T}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ of complex vector spaces by simply viewing the standard matrix for T as an element of $\mathrm{M}_{m \times n}(\mathbb{C})$.

