

LINEAR ALGEBRA Spring 2021 Assignment 7.1 Due March 24

2.2. # 20, 31, 33–35

Exercise 1. Let A, B be a $n \times n$ matrices, and suppose that A is invertible. Prove that B is invertible if and only if ABA^{-1} is invertible, and that in this case we have $(ABA^{-1})^{-1} = AB^{-1}A^{-1}$.

Exercise 2. Let A, B be $n \times n$ matrices.

- **a.** Suppose that AB = I. Use the Invertible Matrix Theorem to show that A is invertible, and that $B = A^{-1}$.
- **b.** Suppose that BA = I. Use the Invertible Matrix Theorem to show that A is invertible, and that $B = A^{-1}$.

This shows that for square matrices, the existence of a one-sided inverse (on either side) is equivalent to the existence of a two-sided inverse. Practically speaking, this means that in order to check that $B = A^{-1}$, we need only show that AB = I or BA = I.