Exercise 1. For the following matrices A, B, compute $A B$ using the right multiplication law.
a. $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right), B=\left(\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right)$
b. $A=\left(\begin{array}{ccc}-4 & 0 & 1 \\ 2 & -2 & 1 \\ 3 & 1 & 7\end{array}\right), B=\left(\begin{array}{cc}-2 & 1 \\ 1 & 0 \\ 1 & -3\end{array}\right)$
c. $A=\left(\begin{array}{ccccc}1 & 0 & -1 & 0 & 1 \\ 2 & 1 & 0 & -1 & 2\end{array}\right), B=\left(\begin{array}{cc}0 & 1 \\ 2 & 3 \\ 4 & 5 \\ 6 & -1\end{array}\right)$

Exercise 2. ${ }^{1}$ Every plane P through the origin in \mathbb{R}^{3} is given by an equation of the form

$$
0=a x+b y+c z=\left(\begin{array}{lll}
a & b & c
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\mathbf{n}^{T} \mathbf{x}
$$

where

$$
\mathbf{n}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \neq 0
$$

Geometrically, \mathbf{n} is perpendicular to P (a normal vector to P), and if we require \mathbf{n} to be a unit vector, then the association $\mathbf{n} \mapsto P$ is a two-to-one correspondence between the points on the unit sphere S^{2} and the planes through $\mathbf{0}$ in \mathbb{R}^{3} (why is it not one-to-one?).

Here's the exercise. Let P be a plane through $\mathbf{0}$ in \mathbb{R}^{3} given by $a x+b y+c z=1$ with unit normal $\mathbf{n}=\left(\begin{array}{lll}a & b & c\end{array}\right)^{T}$, and let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the reflection through P, which is a linear transformation (why?). Choose "convenient" vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ in P so that $\mathcal{B}=\left\{\mathbf{n}, \mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for \mathbb{R}^{3}, and compute $[T]$ from $\left(T(\mathbf{n}) T\left(\mathbf{v}_{1}\right) T\left(\mathbf{v}_{2}\right)\right)$ and ($\left.\begin{array}{lll}\mathbf{n} & \mathbf{v}_{1} & \mathbf{v}_{2}\end{array}\right)$, in terms of a, b, c alone.

[^0]
[^0]: ${ }^{1}$ This exercise might be somewhat challenging. Once we define orthogonal projection, the matrix $[T]$ will be easy to compute. In the mean time, I'm fairly certain the computation of $[T]$ outlined in this exercise is tractable, but I haven't actually worked out the details.

