Matrix Inversion

Ryan C. Daileda

Trinity University

Linear Algebra

Recall

Every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has the form $T(\mathbf{x})=A \mathbf{x}$, where A is the standard matrix

$$
A=[T]=\left(\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right), \mathbf{e}_{j}=\left(\delta_{i j}\right) .
$$

We defined our matrix operations to correspond to the addition, scalar multiplication and composition of linear transformations:

$$
\begin{aligned}
{[S]+[T] } & =[S+T], \\
c[S] & =[c S], \\
{[S][T] } & =[S \circ T] .
\end{aligned}
$$

In terms of matrix columns:

$$
A B=A\left(\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p}
\end{array}\right)=\left(\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right) .
$$

Warnings

Although matrix multiplication has many familiar algebraic properties, there are several notable differences.

Even though $A B$ and $B A$ may both be defined and have the same dimensions, in general $A B \neq B A$.

For instance, if

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

then

$$
A B=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \text { but } B A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

If $A B=B A$, we say that A and B commute with each other.

It also possible to have $A B=0$ even though both A and B are nonzero.

For instance, we have

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

More generally, matrix multiplication does not obey the cancellation law:

$$
A B=A C \nRightarrow B=C
$$

Matrix Powers

If A is a square matrix and $k \in \mathbb{N}$, we define

$$
A^{k}=\underbrace{A \cdots A}_{k \text { times }} .
$$

This makes sense since:

- The product of two $n \times n$ matrices is again an $n \times n$ matrix.
- Matrix multiplication is associative.

If we define

$$
A^{0}=I
$$

then matrix powers obey the usual laws of exponents (as long as the exponents aren't negative).

The Transpose of a Matrix

If A is an $m \times n$ matrix, its transpose is the $n \times m$ matrix A^{T} whose columns are formed by "standing up" the rows of A.

For example:

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
1 & 2 & 3 & 0 \\
4 & 5 & 6 & -1
\end{array}\right) \Rightarrow A^{T}=\left(\begin{array}{cc}
1 & 4 \\
2 & 5 \\
3 & 6 \\
0 & -1
\end{array}\right) \\
& B=\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & -3 & 1 \\
0 & 1 & 4
\end{array}\right) \Rightarrow B^{T}=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & -3 & 1 \\
-1 & 1 & 4
\end{array}\right)
\end{aligned}
$$

Remarks.

- In terms of matrix entries,

$$
\left(A^{T}\right)_{i j}=A_{j i}
$$

- If we treat a vector $\mathbf{v} \in \mathbb{R}^{n}$ as an $n \times 1$ matrix, then \mathbf{v}^{T} is a $1 \times n$ row vector.

The transpose interacts nicely with matrix arithmetic.

Theorem 1 (Properties of the Transpose)

For compatible matrices A and B, and any scalar $c \in \mathbb{R}$:
a. $\left(A^{T}\right)^{T}=A$
b. $(A+B)^{T}=A^{T}+B^{T}$
c. $(c A)^{T}=c\left(A^{T}\right)$
d. $(A B)^{T}=B^{T} A^{T}$

Although properties (a)-(c) are fairly intuitive, (d) takes a little more thought.

Using the row-column rule for matrix multiplication, we have

$$
\begin{aligned}
\left((A B)^{T}\right)_{i j} & =(A B)_{j i}=\sum_{k} A_{j k} B_{k i}=\sum_{k}\left(A^{T}\right)_{k j}\left(B^{T}\right)_{i k} \\
& =\sum_{k}\left(B^{T}\right)_{i k}\left(A^{T}\right)_{k j}=\left(B^{T} A^{T}\right)_{i j}
\end{aligned}
$$

It follows that $(A B)^{T}=B^{T} A^{T}$.
Remark. Although the transpose may seem like a somewhat arbitrary operation, it can be interpreted in terms of linear transformations via linear functionals.

Matrix Inverses

Definition

An $n \times n$ matrix A is called invertible if there is an $n \times n$ matrix B so that

$$
A B=B A=1
$$

In this case we call B the inverse of A and write $B=A^{-1}$.

Remarks.

- Only square matrices can have inverses, but not every square matrix is invertible!
- The inverse of a matrix is the analogue of the reciprocal of a real number.
- The inverse of a square matrix (if it exists) is unique, since

$$
A B=C A=I \Rightarrow C=C I=C(A B)=(C A) B=I B=B
$$

Example

If

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
-3 & 2 \\
2 & -1
\end{array}\right)
$$

then

$$
A B=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)\left(\begin{array}{cc}
-3 & 2 \\
2 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

and

$$
B A=\left(\begin{array}{cc}
-3 & 2 \\
2 & -1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=l .
$$

It follows that $B=A^{-1}$.
Remark. Strictly speaking, to show that $B=A^{-1}$ one must show that both $A B=I$ and $B A=I$. It turns out, though, that either of these equations actually implies the other!

Inverses of 2×2 Matrices

The following result can be extremely useful.

Theorem 2

If

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \text { and } \quad a d-b c \neq 0
$$

then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) .
$$

The proof is by a straightforward computation and is left as an exercise.

Inverses and Solutions of Linear Equations

To solve the (ordinary) equation $5 x=3$, we multiply both sides by $1 / 5=5^{-1}$ to obtain $x=3 / 5$.

This procedure has a perfect analogue for matrix equations involving invertible matrices.

Theorem 3

If A is an invertible $n \times n$ matrix, then for any $\mathbf{b} \in \mathbb{R}^{n}$ the equation $A \mathbf{x}=\mathbf{b}$ has the unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Proof. It is easy to see that $\mathbf{x}=A^{-1} \mathbf{b}$ is indeed a solution:

$$
A\left(A^{-1} \mathbf{b}\right)=\left(A A^{-1}\right) \mathbf{b}=/ \mathbf{b}=\mathbf{b}
$$

On the other hand, if we know that $A \mathbf{x}=\mathbf{b}$, then

$$
A^{-1} \mathbf{b}=A^{-1}(A \mathbf{x})=\left(A^{-1} A\right) \mathbf{x}=I \mathbf{x}=\mathbf{x}
$$

Remark. Note how the proof of Theorem 3 utilizes the "two-sided" nature of A^{-1}.

Example 1

Use matrix inversion to solve the linear system

$$
\begin{aligned}
& 8 x_{1}+6 x_{2}=2, \\
& 5 x_{1}+4 x_{2}=-1 .
\end{aligned}
$$

Solution. The given system is equivalent to the matrix equation

$$
\left(\begin{array}{ll}
8 & 6 \\
5 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{2}{-1} .
$$

Because $8 \cdot 4-5 \cdot 6=2 \neq 0$, the coefficient matrix is invertible, so the solution is given by

$$
\begin{aligned}
\binom{x_{1}}{x_{2}} & =\left(\begin{array}{ll}
8 & 6 \\
5 & 4
\end{array}\right)^{-1}\binom{2}{-1}=\frac{1}{2}\left(\begin{array}{cc}
4 & -6 \\
-5 & 8
\end{array}\right)\binom{2}{-1} \\
& =\frac{1}{2}\binom{14}{-18}=\binom{7}{-9} .
\end{aligned}
$$

Properties of Inversion

The following properties are easy consequences of the uniqueness of the matrix inverse.

Theorem 4

Let A, B be $n \times n$ matrices.
a. If A is invertible, then A^{-1} is invertible and

$$
\left(A^{-1}\right)^{-1}=A
$$

b. If any two of A, B and $A B$ is invertible, then so is the third, and

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

c. If A is invertible, then so is A^{T} and

Proof (Sketch)

To see why (b) is true, suppose A and B are invertible. Then

$$
\begin{aligned}
& (A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I \\
& \left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B=B^{-1} I B=B^{-1} B=I
\end{aligned}
$$

This shows that $A B$ is invertible and that $(A B)^{-1}=B^{-1} A^{-1}$.
Parts (a) and (c) are proved in a similar fashion.
WLOG now suppose that A and $A B$ are invertible.
Then A^{-1} is invertible by part (a) and $A^{-1}(A B)$ is invertible by our work above.

But $A^{-1}(A B)=\left(A^{-1} A\right) B=I B=B$, so B is invertible, too.
Therefore all three of A, B and $A B$ are invertible, and $(A B)^{-1}=B^{-1} A^{-1}$ follows as above.

This finishes the proof of part (c).

Remarks.

- Where did we use the "two-sided" nature of the inverse in the proof above?
- Part (b) generalizes to

$$
\left(A_{1} A_{2} \cdots A_{k}\right)^{-1}=A_{k}^{-1} A_{k-1}^{-1} \cdots A_{1}^{-1} .
$$

Fundamental Questions

Given A^{-1}, solving $A \mathbf{x}=\mathbf{b}$ is very easy.
This leads us to two important questions:

- How can we tell if a square matrix A is invertible?
- If we know A is invertible, how do we compute A^{-1} ?

We turn to Theorem 3 for guidance. If A is invertible, then $A \mathbf{x}=\mathbf{b}$ has a solution for all possible \mathbf{b}.

This means that A must have a pivot in every row, and hence every column, too, since A is square.

Sufficient Conditions for Invertibility

These conditions actually guarantee invertibility as well.
To see this, suppose that A is a square matrix with a pivot in every row (and column).

Then for each j the equation $A \mathbf{x}=\mathbf{e}_{j}$ has a solution, $\mathbf{x}=\mathbf{b}_{j}$. Let $B=\left(\begin{array}{llll}\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}\end{array}\right)$. We then have

$$
A B=\left(\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{n}
\end{array}\right)=\left(\begin{array}{llll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{n}
\end{array}\right)=I .
$$

Notice that if $B \mathbf{x}=\mathbf{0}$, then

$$
\mathbf{x}=l \mathbf{x}=(A B) \mathbf{x}=A(B \mathbf{x})=A \mathbf{0}=\mathbf{0}
$$

That is, the only solution to $B \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$.
This means B must have a pivot in every column (and row, since B is square).

The same reasoning then shows that there is a square matrix C so that $B C=I$.

We then have

$$
A=A I=A(B C)=(A B) C=I C=C .
$$

Thus $B A=B C=l$. So we have

$$
A B=I=B A,
$$

which shows that A is invertible and $A^{-1}=B$.

The Invertible Matrix Theorem - Version 1

We have therefore proven:

Theorem 5 (The Invertible Matrix Theorem)

For a square matrix $A, T F A E$:
a. A is invertible.
b. A has a pivot in each column.
c. A has a pivot in each row.
d. The equation $A \mathbf{x}=\mathbf{0}$ only has the solution $\mathbf{x}=\mathbf{0}$.
e. The equation $A \mathbf{x}=\mathbf{b}$ has a (unique) solution for all \mathbf{b}.

Moreover, in this case, if \mathbf{b}_{j} is the solution to $A \mathbf{x}=\mathbf{e}_{j}$, then

$$
A^{-1}=\left(\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right) .
$$

Computing A^{-1}

We have now seen that the columns of A^{-1} are the solutions to $A \mathbf{x}=\mathbf{e}_{j}$.

To compute these solutions we need to row reduce the augmented matrix $\left(\begin{array}{ll}A & \mathbf{e}_{\mathbf{j}}\end{array}\right)$, for $j=1,2, \ldots, n$.

We can perform these computations simultaneously by row reducing the "super augmented" matrix

$$
\left(\begin{array}{lllll}
A & \mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{n}
\end{array}\right)=\left(\begin{array}{ll}
A & I
\end{array}\right) \xrightarrow{\mathrm{RREF}}\left(\begin{array}{ll}
I & A^{-1}
\end{array}\right) .
$$

This gives us an algorithm for computing A^{-1}.

Computation of A^{-1} Through Row Reduction

Let's record this important result.

Theorem 6

If A is an invertible square matrix, then the row operations that transform A to the identity matrix will transform the identity matrix into A^{-1}. That is,

$$
\left(\begin{array}{ll}
A & I
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{ll}
I & A^{-1}
\end{array}\right)
$$

Remark. Cramer's rule gives an explicit formula for the entries in A^{-1} in terms of determinants, which we will study in Chapter 3.

Example

Let

$$
A=\left(\begin{array}{cccc}
1 & -2 & 0 & 3 \\
2 & -1 & 3 & 1 \\
0 & -3 & -1 & 2 \\
3 & 1 & -1 & 0
\end{array}\right)
$$

We have
$\left(\begin{array}{cccccccc}1 & -2 & 0 & 3 & 1 & 0 & 0 & 0 \\ 2 & -1 & 3 & 1 & 0 & 1 & 0 & 0 \\ 0 & -3 & -1 & 2 & 0 & 0 & 1 & 0 \\ 3 & 1 & -1 & 0 & 0 & 0 & 0 & 1\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & -\frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{2}{7} \\ 0 & 1 & 0 & 0 & \frac{25}{56} & -\frac{11}{56} & -\frac{4}{7} & -\frac{1}{56} \\ 0 & 0 & 1 & 0 & \frac{1}{56} & \frac{13}{56} & -\frac{1}{7} & -\frac{9}{56} \\ 0 & 0 & 0 & 1 & \frac{19}{28} & -\frac{5}{28} & -\frac{3}{7} & -\frac{3}{28}\end{array}\right)$

This simultaneously shows that A is invertible (why?) and tells us that

$$
A^{-1}=\left(\begin{array}{cccc}
-\frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{2}{7} \\
\frac{25}{56} & -\frac{11}{56} & -\frac{4}{7} & -\frac{1}{56} \\
\frac{1}{56} & \frac{13}{56} & -\frac{1}{7} & -\frac{9}{56} \\
\frac{19}{28} & -\frac{5}{28} & -\frac{3}{7} & -\frac{3}{28}
\end{array}\right)
$$

Remarks.

- Note that although the entries in A were integers, the same is not true of A^{-1}.
- However, the denominators in A^{-1} are all divisors of 56 . Cramer's rule will explain this phenomenon.

Coordinate Maps Revisited

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for \mathbb{R}^{n}.

Recall that the \mathcal{B}-coordinate map $[\cdot]_{\mathcal{B}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined implicitly by the equation

$$
\underbrace{\left(\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right)}_{B}[\mathbf{x}]_{\mathcal{B}}=\mathbf{x} .
$$

Because the columns of B are linearly independent, B is invertible. Hence

$$
[\mathbf{x}]_{\mathcal{B}}=\left(\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right)^{-1} \mathbf{x} .
$$

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation and we know the values $T\left(\mathbf{b}_{i}\right)$ for $i=1,2, \ldots, n$.
To compute T from this information we notice that

$$
\begin{aligned}
T(\mathbf{x}) & =[T] \mathbf{x}=[T] B B^{-1} \mathbf{x} \\
& =\left(\left[\begin{array}{llll}
{[] \mathbf{b}_{1}} & {[T] \mathbf{b}_{2}} & \cdots & \left.[T] \mathbf{b}_{n}\right) B^{-1} \mathbf{x} \\
& =\left(\begin{array}{llll}
T\left(\mathbf{b}_{1}\right) & T\left(\mathbf{b}_{2}\right) & \cdots & \left.T\left(\mathbf{b}_{n}\right)\right) B^{-1} \mathbf{x} .
\end{array}\right.
\end{array} . \begin{array}{ll}
\end{array}\right]\right.
\end{aligned}
$$

This proves:

Theorem 7

If $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for \mathbb{R}^{n} and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation, then the standard matrix for T is given by

$$
[T]=\left(\begin{array}{lll}
T\left(\mathbf{b}_{1}\right) & \cdots & T\left(\mathbf{b}_{n}\right)
\end{array}\right)\left(\begin{array}{lll}
\mathbf{b}_{1} & \cdots & \mathbf{b}_{n}
\end{array}\right)^{-1}
$$

Example

Let L be a line through the origin in \mathbb{R}^{2} and define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to be reflection through L.
Every line through the origin in \mathbb{R}^{2} can be given by an equation of the form $a x+b y=0$ with

$$
\mathbf{n}=\binom{a}{b} \neq \mathbf{0}
$$

If we rotate \mathbf{n} by 90 degrees we get

$$
\mathbf{v}=\binom{-b}{a}
$$

which is clearly not a multiple of \mathbf{n}. Therefore $\mathcal{B}=\{\mathbf{n}, \mathbf{v}\}$ is a basis for \mathbb{R}^{2}.

Because \mathbf{v} is parallel to L while \mathbf{n} is perpendicular to it, we have

$$
T(\mathbf{v})=\mathbf{v}, \quad T(\mathbf{n})=-\mathbf{n} .
$$

It follows from Theorem 7 that

$$
\begin{aligned}
{[T] } & =\left(\begin{array}{ll}
\mathbf{v} & -\mathbf{n}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{v} & \mathbf{n}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
-b & -a \\
a & -b
\end{array}\right)\left(\begin{array}{cc}
-b & a \\
a & b
\end{array}\right)^{-1} \\
& =\frac{-1}{a^{2}+b^{2}}\left(\begin{array}{cc}
-b & -a \\
a & -b
\end{array}\right)\left(\begin{array}{cc}
b & -a \\
-a & -b
\end{array}\right) \\
& =\frac{-1}{a^{2}+b^{2}}\left(\begin{array}{cc}
a^{2}-b^{2} & 2 a b \\
2 a b & b^{2}-a^{2}
\end{array}\right) .
\end{aligned}
$$

Let's record our conclusion.

Theorem 8

The standard matrix for reflection through the line with equation $a x+b y=0$ is

$$
[T]=\frac{-1}{a^{2}+b^{2}}\left(\begin{array}{cc}
a^{2}-b^{2} & 2 a b \\
2 a b & b^{2}-a^{2}
\end{array}\right)
$$

Examples.

- Reflection through the x-axis $(y=0 \Rightarrow a=0, b=1)$ is given by

$$
\frac{-1}{1}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

as we saw earlier.

- Reflection through the line $y=x(x-y=0$ $\Rightarrow a=1, b=-1$) is given by

$$
\frac{-1}{2}\left(\begin{array}{cc}
0 & -2 \\
-2 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

in agreement with earlier work.
Given a line through the origin in \mathbb{R}^{2} with equation $a x+b y=0$, we are free to scale the normal vector $\mathbf{n}=(a, b)$ as we see fit.

In particular, we may assume that \mathbf{n} is a unit vector, i.e. $a^{2}+b^{2}=1$. This means that (a, b) lies on the unit circle.

Therefore there is an angle θ so that

$$
a=\cos \theta \text { and } b=\sin \theta
$$

The double angle formulas then give

$$
\begin{array}{r}
a^{2}-b^{2}=\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta \\
2 a b=2 \cos \theta \sin \theta=\sin 2 \theta
\end{array}
$$

The reflection matrix therefore can be written

$$
\begin{aligned}
\frac{-1}{a^{2}+b^{2}}\left(\begin{array}{cc}
a^{2}-b^{2} & 2 a b \\
2 a b & b^{2}-a^{2}
\end{array}\right) & =-\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right) \\
& =-\left(\begin{array}{cc}
\cos 2 \theta & -\sin 2 \theta \\
\sin 2 \theta & \cos 2 \theta
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos 2 \theta & -\sin 2 \theta \\
\sin 2 \theta & \cos 2 \theta
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

This shows that every reflection in \mathbb{R}^{2} is simply reflection through the y-axis, followed by an appropriate rotation.

In the other direction, if we are given an angle ϕ and we set

$$
a=\cos \frac{\phi}{2} \quad \text { and } \quad b=\sin \frac{\phi}{2}
$$

then reflection through the line $a x+b y=0$ is given by

$$
\begin{aligned}
{[T]=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) } & \left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)=[T]\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),
\end{aligned}
$$

which shows that every rotation is the composition of two reflections!

