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Recall

Every linear transformation T : Rn → R
m has the form

T (x) = Ax, where A is the standard matrix

A = [T ] =
(
T (e1) T (e2) · · · T (en)

)
, ej = (δij ).

We defined our matrix operations to correspond to the addition,
scalar multiplication and composition of linear transformations:

[S ] + [T ] = [S + T ],

c[S ] = [cS ],

[S ][T ] = [S ◦ T ].

In terms of matrix columns:

AB = A
(
b1 b2 · · · bp

)
=

(
Ab1 Ab2 · · · Abp

)
.
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Warnings

Although matrix multiplication has many familiar algebraic
properties, there are several notable differences.

Even though AB and BA may both be defined and have the same
dimensions, in general AB 6= BA.

For instance, if

A =

(
1 1
0 1

)

and B =

(
0 1
1 0

)

,

then

AB =

(
1 1
1 0

)

but BA =

(
0 1
1 1

)

.

If AB = BA, we say that A and B commute with each other.
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It also possible to have AB = 0 even though both A and B are
nonzero.

For instance, we have

(
1 0
0 0

)(
0 0
0 1

)

=

(
0 0
0 0

)

.

More generally, matrix multiplication does not obey the
cancellation law:

AB = AC 6⇒ B = C .
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Matrix Powers

If A is a square matrix and k ∈ N, we define

Ak = A · · ·A
︸ ︷︷ ︸

k times

.

This makes sense since:

The product of two n × n matrices is again an n × n matrix.

Matrix multiplication is associative.

If we define
A0 = I ,

then matrix powers obey the usual laws of exponents (as long as
the exponents aren’t negative).

Daileda Matrix Inversion



The Transpose of a Matrix

If A is an m × n matrix, its transpose is the n ×m matrix AT

whose columns are formed by “standing up” the rows of A.

For example:

A =

(
1 2 3 0
4 5 6 −1

)

⇒ AT =







1 4
2 5
3 6
0 −1







B =





1 0 −1
2 −3 1
0 1 4



 ⇒ BT =





1 2 0
0 −3 1
−1 1 4
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Remarks.

In terms of matrix entries,

(AT )ij = Aji .

If we treat a vector v ∈ R
n as an n × 1 matrix, then vT is a

1× n row vector.

The transpose interacts nicely with matrix arithmetic.

Theorem 1 (Properties of the Transpose)

For compatible matrices A and B, and any scalar c ∈ R:

a. (AT )T = A

b. (A+ B)T = AT + BT

c. (cA)T = c(AT )

d. (AB)T = BTAT
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Although properties (a)-(c) are fairly intuitive, (d) takes a little
more thought.

Using the row-column rule for matrix multiplication, we have

((AB)T )ij = (AB)ji =
∑

k

AjkBki =
∑

k

(AT )kj (B
T )ik

=
∑

k

(BT )ik(A
T )kj = (BTAT )ij .

It follows that (AB)T = BTAT .

Remark. Although the transpose may seem like a somewhat
arbitrary operation, it can be interpreted in terms of linear
transformations via linear functionals.
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Matrix Inverses

Definition

An n × n matrix A is called invertible if there is an n × n matrix B
so that

AB = BA = I .

In this case we call B the inverse of A and write B = A−1.

Remarks.

Only square matrices can have inverses, but not every square
matrix is invertible!

The inverse of a matrix is the analogue of the reciprocal of a
real number.

The inverse of a square matrix (if it exists) is unique, since

AB = CA = I ⇒ C = CI = C (AB) = (CA)B = IB = B .
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Example

If

A =

(
1 2
2 3

)

and B =

(
−3 2
2 −1

)

,

then

AB =

(
1 2
2 3

)(
−3 2
2 −1

)

=

(
1 0
0 1

)

= I

and

BA =

(
−3 2
2 −1

)(
1 2
2 3

)

=

(
1 0
0 1

)

= I .

It follows that B = A−1.

Remark. Strictly speaking, to show that B = A−1 one must show
that both AB = I and BA = I . It turns out, though, that either of
these equations actually implies the other!
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Inverses of 2× 2 Matrices

The following result can be extremely useful.

Theorem 2

If

A =

(
a b
c d

)

and ad − bc 6= 0,

then A is invertible and

A−1 =
1

ad − bc

(
d −b
−c a

)

.

The proof is by a straightforward computation and is left as an
exercise.
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Inverses and Solutions of Linear Equations

To solve the (ordinary) equation 5x = 3, we multiply both sides by
1/5 = 5−1 to obtain x = 3/5.

This procedure has a perfect analogue for matrix equations
involving invertible matrices.

Theorem 3

If A is an invertible n× n matrix, then for any b ∈ R
n the equation

Ax = b has the unique solution x = A−1b.

Proof. It is easy to see that x = A−1b is indeed a solution:

A(A−1b) = (AA−1)b = Ib = b.
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On the other hand, if we know that Ax = b, then

A−1b = A−1(Ax) = (A−1A)x = Ix = x.

Remark. Note how the proof of Theorem 3 utilizes the
“two-sided” nature of A−1.

Example 1

Use matrix inversion to solve the linear system

8x1 + 6x2 = 2,

5x1 + 4x2 = −1.
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Solution. The given system is equivalent to the matrix equation

(
8 6
5 4

)(
x1
x2

)

=

(
2
−1

)

.

Because 8 · 4− 5 · 6 = 2 6= 0, the coefficient matrix is invertible, so
the solution is given by

(
x1
x2

)

=

(
8 6
5 4

)−1 (
2
−1

)

=
1

2

(
4 −6
−5 8

)(
2
−1

)

=
1

2

(
14
−18

)

=

(
7
−9

)

.
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Properties of Inversion

The following properties are easy consequences of the uniqueness
of the matrix inverse.

Theorem 4

Let A,B be n× n matrices.

a. If A is invertible, then A−1 is invertible and

(A−1)−1 = A.

b. If any two of A, B and AB is invertible, then so is the third,
and

(AB)−1 = B−1A−1.

c. If A is invertible, then so is AT and

(AT )−1 = (A−1)T .
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Proof (Sketch)

To see why (b) is true, suppose A and B are invertible. Then

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I ,

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I .

This shows that AB is invertible and that (AB)−1 = B−1A−1.

Parts (a) and (c) are proved in a similar fashion.

WLOG now suppose that A and AB are invertible.

Then A−1 is invertible by part (a) and A−1(AB) is invertible by
our work above.
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But A−1(AB) = (A−1A)B = IB = B , so B is invertible, too.

Therefore all three of A, B and AB are invertible, and
(AB)−1 = B−1A−1 follows as above.

This finishes the proof of part (c).

Remarks.

Where did we use the “two-sided” nature of the inverse in the
proof above?

Part (b) generalizes to

(A1A2 · · ·Ak)
−1 = A−1

k
A−1
k−1

· · ·A−1
1 .
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Fundamental Questions

Given A−1, solving Ax = b is very easy.

This leads us to two important questions:

How can we tell if a square matrix A is invertible?

If we know A is invertible, how do we compute A−1?

We turn to Theorem 3 for guidance. If A is invertible, then Ax = b

has a solution for all possible b.

This means that A must have a pivot in every row, and hence
every column, too, since A is square.
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Sufficient Conditions for Invertibility

These conditions actually guarantee invertibility as well.

To see this, suppose that A is a square matrix with a pivot in every
row (and column).

Then for each j the equation Ax = ej has a solution, x = bj .

Let B =
(
b1 b2 · · · bn

)
. We then have

AB =
(
Ab1 Ab2 · · · Abn

)
=

(
e1 e2 · · · en

)
= I .

Notice that if Bx = 0, then

x = Ix = (AB)x = A(Bx) = A0 = 0.
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That is, the only solution to Bx = 0 is x = 0.

This means B must have a pivot in every column (and row, since
B is square).

The same reasoning then shows that there is a square matrix C so
that BC = I .

We then have

A = AI = A(BC ) = (AB)C = IC = C .

Thus BA = BC = I . So we have

AB = I = BA,

which shows that A is invertible and A−1 = B .
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The Invertible Matrix Theorem - Version 1

We have therefore proven:

Theorem 5 (The Invertible Matrix Theorem)

For a square matrix A,TFAE:

a. A is invertible.

b. A has a pivot in each column.

c. A has a pivot in each row.

d. The equation Ax = 0 only has the solution x = 0.

e. The equation Ax = b has a (unique) solution for all b.

Moreover, in this case, if bj is the solution to Ax = ej , then

A−1 =
(
b1 b2 · · · bn

)
.

Daileda Matrix Inversion



Computing A
−1

We have now seen that the columns of A−1 are the solutions to
Ax = ej .

To compute these solutions we need to row reduce the augmented
matrix

(
A ej

)
, for j = 1, 2, . . . , n.

We can perform these computations simultaneously by row
reducing the “super augmented” matrix

(
A e1 e2 · · · en

)
=

(
A I

) RREF
−−−→

(
I A−1

)
.

This gives us an algorithm for computing A−1.
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Computation of A−1 Through Row Reduction

Let’s record this important result.

Theorem 6

If A is an invertible square matrix, then the row operations that
transform A to the identity matrix will transform the identity
matrix into A−1. That is,

(
A I

) RREF
−−−→

(
I A−1

)
.

Remark. Cramer’s rule gives an explicit formula for the entries in
A−1 in terms of determinants, which we will study in Chapter 3.

Daileda Matrix Inversion



Example

Let

A =







1 −2 0 3
2 −1 3 1
0 −3 −1 2
3 1 −1 0







.

We have







1 −2 0 3 1 0 0 0
2 −1 3 1 0 1 0 0
0 −3 −1 2 0 0 1 0
3 1 −1 0 0 0 0 1







RREF
−−−→









1 0 0 0 −1
7

1
7

1
7

2
7

0 1 0 0 25
56

−11
56

−4
7

− 1
56

0 0 1 0 1
56

13
56

−1
7

− 9
56

0 0 0 1 19
28

− 5
28

−3
7

− 3
28
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This simultaneously shows that A is invertible (why?) and tells us
that

A−1 =









−1
7

1
7

1
7

2
7

25
56

−11
56

−4
7

− 1
56

1
56

13
56

−1
7

− 9
56

19
28

− 5
28

−3
7

− 3
28









.

Remarks.

Note that although the entries in A were integers, the same is
not true of A−1.

However, the denominators in A−1 are all divisors of 56.
Cramer’s rule will explain this phenomenon.
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Coordinate Maps Revisited

Let B = {b1,b2, . . . ,bn} be a basis for Rn.

Recall that the B-coordinate map [·]B : Rn → R
n is defined

implicitly by the equation

(
b1 b2 · · · bn

)

︸ ︷︷ ︸

B

[x]B = x.

Because the columns of B are linearly independent, B is invertible.
Hence

[x]B =
(
b1 b2 · · · bn

)−1
x .
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Suppose T : Rn → R
n is a linear transformation and we know the

values T (bi ) for i = 1, 2, . . . , n.

To compute T from this information we notice that

T (x) = [T ]x = [T ]BB−1x

=
(
[T ]b1 [T ]b2 · · · [T ]bn

)
B−1x

=
(
T (b1) T (b2) · · · T (bn)

)
B−1x.

This proves:

Theorem 7

If B = {b1,b2, . . . ,bn} is a basis for Rn and T : Rn → R
n is a

linear transformation, then the standard matrix for T is given by

[T ] =
(
T (b1) · · · T (bn)

) (
b1 · · · bn

)−1
.
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Example

Let L be a line through the origin in R
2 and define T : R2 → R

2 to
be reflection through L.

Every line through the origin in R
2 can be given by an equation of

the form ax + by = 0 with

n =

(
a
b

)

6= 0.

If we rotate n by 90 degrees we get

v =

(
−b
a

)

,

which is clearly not a multiple of n. Therefore B = {n, v} is a basis
for R2.
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Because v is parallel to L while n is perpendicular to it, we have

T (v) = v, T (n) = −n.

It follows from Theorem 7 that

[T ] =
(
v −n

) (
v n

)−1
=

(
−b −a
a −b

)(
−b a
a b

)−1

=
−1

a2 + b2

(
−b −a
a −b

)(
b −a
−a −b

)

=
−1

a2 + b2

(
a2 − b2 2ab
2ab b2 − a2

)

.
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Let’s record our conclusion.

Theorem 8

The standard matrix for reflection through the line with equation
ax + by = 0 is

[T ] =
−1

a2 + b2

(
a2 − b2 2ab
2ab b2 − a2

)

.

Examples.

Reflection through the x-axis (y = 0 ⇒ a = 0, b = 1) is given
by

−1

1

(
−1 0
0 1

)

=

(
1 0
0 −1

)

,

as we saw earlier.
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Reflection through the line y = x (x − y = 0
⇒ a = 1, b = −1) is given by

−1

2

(
0 −2
−2 0

)

=

(
0 1
1 0

)

,

in agreement with earlier work.

Given a line through the origin in R
2 with equation ax + by = 0,

we are free to scale the normal vector n = (a, b) as we see fit.

In particular, we may assume that n is a unit vector, i.e.
a2 + b2 = 1. This means that (a, b) lies on the unit circle.

Therefore there is an angle θ so that

a = cos θ and b = sin θ.
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The double angle formulas then give

a2 − b2 = cos2 θ − sin2 θ = cos 2θ,

2ab = 2cos θ sin θ = sin 2θ.

The reflection matrix therefore can be written

−1

a2 + b2

(
a2 − b2 2ab
2ab b2 − a2

)

= −

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)

= −

(
cos 2θ − sin 2θ
sin 2θ cos 2θ

)(
1 0
0 −1

)

=

(
cos 2θ − sin 2θ
sin 2θ cos 2θ

)(
−1 0
0 1

)

.

This shows that every reflection in R
2 is simply reflection through

the y -axis, followed by an appropriate rotation.
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In the other direction, if we are given an angle φ and we set

a = cos
φ

2
and b = sin

φ

2
,

then reflection through the line ax + by = 0 is given by

[T ] =

(
cosφ − sinφ
sinφ cosφ

)(
−1 0
0 1

)

⇒

(
cosφ − sinφ
sinφ cosφ

)

= [T ]

(
−1 0
0 1

)

,

which shows that every rotation is the composition of two
reflections!
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