Elementary Matrices

Ryan C. Daileda

Trinity University

Linear Algebra

Introduction

We defined matrix multiplication by the rule

$$
A B=A\left(\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p}
\end{array}\right)=\left(\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right) .
$$

That is, to compute $A B$ we left multiply the columns of B by A. We will call this the left multiplication rule.

It turns out that we can also compute $A B$ by instead right multiplying the rows of A by B.

This right multiplication rule will enable us to implement row operations as (left) multiplication by appropriate elementary matrices.

The Row-Matrix Product

Let A be an $m \times n$ matrix and let $\mathbf{v} \in \mathbb{R}^{m}$. Then $A^{T} \mathbf{v} \in \mathbb{R}^{n}$. Let R_{i} denote the i th row of A (which is a $1 \times n$ matrix). Then

$$
A^{T} \mathbf{v}=\left(\begin{array}{llll}
R_{1}^{T} & R_{2}^{T} & \cdots & R_{m}^{T}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right)=\sum_{i} v_{i} R_{i}^{T}=\left(\sum_{i} v_{i} R_{i}\right)^{T}
$$

Taking the transpose of both sides we obtain

$$
\sum_{i} v_{i} R_{i}=\left(A^{T} \mathbf{v}\right)^{T}=\mathbf{v}^{T} A=\left(\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{m}
\end{array}\right)\left(\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{m}
\end{array}\right) .
$$

That is, $\mathbf{v}^{T} A$ is the linear combination of the rows of A, using the entries of \mathbf{v} as weights.

Notice that we have

$$
\begin{aligned}
A B & \left.=\left(\begin{array}{lllll}
B^{T} A^{T}
\end{array}\right)^{T}=\left(\begin{array}{llll}
B^{T} & \left(\begin{array}{lll}
R_{1}^{T} & R_{2}^{T} & \cdots
\end{array} R_{m}^{T}\right.
\end{array}\right)\right)^{T} \\
& =\left(\begin{array}{llll}
B^{T} R_{1}^{T} & B^{T} R_{2}^{T} & \cdots & B^{T} R_{m}^{T}
\end{array}\right)^{T} \\
& =\left(\begin{array}{lll}
\left(R_{1} B\right)^{T} & \left(R_{2} B\right)^{T} & \cdots\left(R_{m} B\right)^{T}
\end{array}\right)^{T}=\left(\begin{array}{c}
R_{1} B \\
R_{2} B \\
\vdots \\
R_{m} B
\end{array}\right) .
\end{aligned}
$$

This shows that $A B$ can be computed by letting B act on the rows of A (from the right).

The Right Multiplication Rule

This proves:

Theorem 1 (The Right Multiplication Rule)

Let A and B be (compatible) matrices, and let R_{i} denote the ith row of A. Then the ith row of $A B$ is $R_{i} B$, which is the linear combination of the rows of B using the entries of the ith row of A as weights.

Remarks.

- This is similar to, though not quite identical to, what the book calls the Column-Row Expansion of $A B$.
- The name is meant to indicate that in the product $A B$ we are thinking of B acting on the rows of A on the right.

Example

Suppose

$$
A=\left(\begin{array}{cccc}
2 & -1 & 3 & 1 \\
0 & 4 & 1 & -1
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & 2 & 2 \\
0 & 3 & -1 \\
-1 & 2 & 3
\end{array}\right)
$$

The right multiplication rule then gives

$$
\begin{aligned}
A B & =\binom{2\left(\begin{array}{lll}
1 & 0 & -1
\end{array}\right)-\left(\begin{array}{lll}
2 & 2 & 2
\end{array}\right)+3\left(\begin{array}{lll}
0 & 3 & -1
\end{array}\right)+\left(\begin{array}{lll}
-1 & 2 & 3
\end{array}\right)}{0\left(\begin{array}{lll}
1 & 0 & -1
\end{array}\right)+4\left(\begin{array}{lll}
2 & 2 & 2
\end{array}\right)+\left(\begin{array}{lll}
0 & 3 & -1
\end{array}\right)-\left(\begin{array}{lll}
-1 & 2 & 3
\end{array}\right)} \\
& =\left(\begin{array}{ccc}
-1 & 9 & -4 \\
9 & 9 & 4
\end{array}\right),
\end{aligned}
$$

which agrees with the usual "left" computation of $A B$ (check it!).

Elementary Matrices

We can use the right-multiplication law to cast a new light on elementary row operations.

Let A be an $m \times n$ matrix. Since \mathbf{e}_{j} is the j th columns of I, \mathbf{e}_{i}^{T} is the i th row of $I^{T}=I$.

Because \mathbf{e}_{i} has a 1 in the i th position and zeros elsewhere,

$$
\mathbf{e}_{i}^{T} A=i \text { th row of } A
$$

Let E be the $n \times n$ matrix obtained by interchanging the i th and j th row of I.

The right-multiplication law then tells us that $E A$ is the matrix obtained by interchanging the i th and j th row of A.

That is:
If E is the matrix obtained by interchanging the i th and j th rows of I, then interchanging the i th and j th rows of A can be achieved algebraically by left multiplication by E.

Example. Left multiplication by

$$
E=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

will interchange the first and third rows of any $4 \times n$ matrix.

Now suppose E^{\prime} is the matrix obtained from / by adding a times its k th row to its j th row. Then

$$
i \text { th row of } E^{\prime}= \begin{cases}\mathbf{e}_{i}^{T} & \text { if } i \neq j \\ a \mathbf{e}_{k}^{T}+\mathbf{e}_{j}^{T} & \text { if } i=j\end{cases}
$$

Thus

$$
\begin{aligned}
i \text { th row of } E^{\prime} A & = \begin{cases}\mathbf{e}_{i}^{T} A & \text { if } i \neq j, \\
a\left(\mathbf{e}_{k}^{T} A\right)+\mathbf{e}_{j}^{T} A & \text { if } i=j\end{cases} \\
& = \begin{cases}i \text { th row of } A & \text { if } i \neq j, \\
a(k \text { th row of } A)+(j \text { th row of } A) & \text { if } i=j\end{cases}
\end{aligned}
$$

Thus:

If E^{\prime} is the matrix obtained from / by adding a times its k th row to its j th rows, then the same row operation can be performed on A by left multiplication by E^{\prime}.

Example. If A is a $4 \times n$ matrix, the row operation

$$
3 R_{4}+R_{2} \rightarrow R_{2}
$$

is given by left multiplication by

$$
E^{\prime}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

An entirely similar computation shows that:
If $E^{\prime \prime}$ is the matrix obtained from $/$ by scaling its i th row by $a \neq 0$, then the same row operation can be performed on A by left multiplication by $E^{\prime \prime}$.

Example. Left multiplication by

$$
E^{\prime \prime}=\left(\begin{array}{ccccc}
1 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & -7 & \\
& & & & 1
\end{array}\right)
$$

will scale the fourth row of any $5 \times n$ matrix by -7 .

Elementary Matrices

Matrices of the form E, E^{\prime} or $E^{\prime \prime}$ (which are obtained from I by performing just a single row operation) are called elementary matrices.

Our work above proves:

Theorem 2

If A has the echelon form U, then there is a sequence of elementary matrices $E_{1}, E_{2}, \ldots, E_{r}$ (corresponding to the row operations used to transform A into U) so that

$$
U=E_{r} E_{r-1} \cdots E_{1} A
$$

Inverses of Elementary Matrices

If E is an elementary matrix corresponding to a certain elementary row operation, and E^{\prime} is the matrix corresponding to the inverse operation, then

$$
E^{\prime} E=E^{\prime} E I=E^{\prime}(E I)=I
$$

since E^{\prime} undoes what E does.
This proves:

Lemma 1

If E is an elementary matrix corresponding to a certain row operation, then E is invertible and E^{-1} is the matrix corresponding to the inverse operation.

Elementary Matrices and Invertibility

We can now use Theorem 2 to deduce another characterization of invertible matrices.

Corollary 1

A square matrix is invertible if and only if it is equal to a product of elementary matrices.

Proof. Because the product of invertible matrices is invertible, Lemma 1 implies that any product of elementary matrices is invertible.

For the converse, suppose A is invertible. Then A has a pivot in every row and column, so that

$$
A \xrightarrow{\mathrm{RREF}} I
$$

By Theorem 2, there are elementary matrices $E_{1}, E_{2}, \ldots, E_{r}$ so that

$$
E_{r} E_{r-1} \cdots E_{1} A=I
$$

Thus

$$
A=\left(E_{r} E_{r-1} \cdots E_{1}\right)^{-1}=E_{1}^{-1} E_{2}^{-1} \cdots E_{r}^{-1}
$$

which by Lemma 1 is a product of elementary matrices.

