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Introduction

We defined matrix multiplication by the rule

AB = A
(

b1 b2 · · · bp
)

=
(

Ab1 Ab2 · · · Abp
)

.

That is, to compute AB we left multiply the columns of B by A.
We will call this the left multiplication rule.

It turns out that we can also compute AB by instead right
multiplying the rows of A by B .

This right multiplication rule will enable us to implement row
operations as (left) multiplication by appropriate elementary
matrices.
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The Row-Matrix Product

Let A be an m × n matrix and let v ∈ R
m. Then ATv ∈ R

n.

Let Ri denote the ith row of A (which is a 1× n matrix). Then

ATv =
(

RT
1 RT

2 · · · RT
m

)











v1
v2
.

.

.

vm











=
∑

i

viR
T
i =

(

∑

i

viRi

)T

Taking the transpose of both sides we obtain

∑

i

viRi = (ATv)T = vTA =
(

v1 v2 · · · vm
)











R1

R2

.

.

.

Rm











.
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That is, vTA is the linear combination of the rows of A, using the
entries of v as weights.

Notice that we have

AB = (BTAT )T = (BT
(

RT
1 RT

2 · · · RT
m

)

)T

=
(

BTRT
1 BTRT

2 · · · BTRT
m

)T

=
(

(R1B)T (R2B)T · · · (RmB)T
)T

=











R1B
R2B
.

.

.

RmB











.

This shows that AB can be computed by letting B act on the rows
of A (from the right).
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The Right Multiplication Rule

This proves:

Theorem 1 (The Right Multiplication Rule)

Let A and B be (compatible) matrices, and let Ri denote the ith
row of A. Then the ith row of AB is RiB, which is the linear
combination of the rows of B using the entries of the ith row of A
as weights.

Remarks.

This is similar to, though not quite identical to, what the
book calls the Column-Row Expansion of AB .

The name is meant to indicate that in the product AB we are
thinking of B acting on the rows of A on the right.
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Example

Suppose

A =

(

2 −1 3 1
0 4 1 −1

)

and B =









1 0 −1
2 2 2
0 3 −1
−1 2 3









.

The right multiplication rule then gives

AB =

(

2
(

1 0 −1
)

−
(

2 2 2
)

+ 3
(

0 3 −1
)

+
(

−1 2 3
)

0
(

1 0 −1
)

+ 4
(

2 2 2
)

+
(

0 3 −1
)

−
(

−1 2 3
)

)

=

(

−1 9 −4
9 9 4

)

,

which agrees with the usual “left” computation of AB (check it!).
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Elementary Matrices

We can use the right-multiplication law to cast a new light on
elementary row operations.

Let A be an m × n matrix. Since ej is the jth columns of I , eTi is
the ith row of IT = I .

Because ei has a 1 in the ith position and zeros elsewhere,

eTi A = ith row of A.

Let E be the n × n matrix obtained by interchanging the ith and
jth row of I .

The right-multiplication law then tells us that EA is the matrix
obtained by interchanging the ith and jth row of A.
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That is:

If E is the matrix obtained by interchanging the ith and jth
rows of I , then interchanging the ith and jth rows of A can be
achieved algebraically by left multiplication by E .

Example. Left multiplication by

E =









0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1









will interchange the first and third rows of any 4× n matrix.
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Now suppose E ′ is the matrix obtained from I by adding a times
its kth row to its jth row. Then

ith row of E ′ =

{

eTi if i 6= j ,

aeTk + eTj if i = j .

Thus

ith row of E ′A =

{

eTi A if i 6= j ,

a(eTk A) + eTj A if i = j .

=

{

ith row of A if i 6= j ,

a(kth row of A) + (jth row of A) if i = j .
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Thus:

If E ′ is the matrix obtained from I by adding a times its kth row
to its jth rows, then the same row operation can be performed
on A by left multiplication by E ′.

Example. If A is a 4× n matrix, the row operation

3R4 + R2 → R2

is given by left multiplication by

E ′ =









1 0 0 0
0 1 0 3
0 0 1 0
0 0 0 1









.
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An entirely similar computation shows that:

If E ′′ is the matrix obtained from I by scaling its ith row by
a 6= 0, then the same row operation can be performed on A by
left multiplication by E ′′.

Example. Left multiplication by

E ′′ =













1
1

1
−7

1













will scale the fourth row of any 5× n matrix by −7.
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Elementary Matrices

Matrices of the form E , E ′ or E ′′ (which are obtained from I by
performing just a single row operation) are called elementary
matrices.

Our work above proves:

Theorem 2

If A has the echelon form U, then there is a sequence of
elementary matrices E1,E2, . . . ,Er (corresponding to the row
operations used to transform A into U) so that

U = ErEr−1 · · · E1A.
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Inverses of Elementary Matrices

If E is an elementary matrix corresponding to a certain elementary
row operation, and E ′ is the matrix corresponding to the inverse
operation, then

E ′E = E ′EI = E ′(EI ) = I ,

since E ′ undoes what E does.

This proves:

Lemma 1

If E is an elementary matrix corresponding to a certain row
operation, then E is invertible and E−1 is the matrix corresponding
to the inverse operation.
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Elementary Matrices and Invertibility

We can now use Theorem 2 to deduce another characterization of
invertible matrices.

Corollary 1

A square matrix is invertible if and only if it is equal to a product
of elementary matrices.

Proof. Because the product of invertible matrices is invertible,
Lemma 1 implies that any product of elementary matrices is
invertible.
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For the converse, suppose A is invertible. Then A has a pivot in
every row and column, so that

A
RREF
−−−→ I .

By Theorem 2, there are elementary matrices E1,E2, . . . ,Er so that

ErEr−1 · · ·E1A = I .

Thus
A = (ErEr−1 · · ·E1)

−1 = E−1
1 E−1

2 · · ·E−1
r ,

which by Lemma 1 is a product of elementary matrices.
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