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Recall

In order to efficiently solve the linear system

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

.

.

.
.
.
.

am1x1 + am2x2 + · · ·+ amnxn = bm,

we first introduced the augmented matrix

(A b) =











a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
.
.
.

.

.

.
. . .

.

.

.
.
.
.

am1 am2 · · · amn bm











.
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We then implemented Gaussian elimination (row reduction) by
performing elementary row operations on (A b) until we could
simply recognize the solution(s) of the system.

Elementary Row Operations

(Replacement) Replace one row by itself plus a multiple of
another row.

(Interchange) Interchange two rows.

(Scaling) Multiply all entries in a row by a nonzero constant.

Question. How do we know when to stop row reducing?

Answer. When we reach an echelon form.
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Row Echelon Form

We will say that a row (or column) of a matrix is nonzero if it has
at least one nonzero entry.

The leftmost entry in a nonzero row will be called its leading entry.

Definition (Row Echelon Form)

A matrix M is said to be in row echelon form (REF) iff:

1. All nonzero rows are above all rows of zeros.

2. The leading entry of any row is to the right of the leading
entry above it.

3. All entries directly below a leading entry are zero.
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Example

The following are (row) echelon forms. The symbol � denotes a
nonzero entry, while ∗ denotes an arbitrary value.





0 � ∗

0 0 �

0 0 0

















� ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 0 0 � ∗ ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 � ∗ ∗












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Reduced Row Echelon Form

Definition (Reduced Row Echelon Form)

Suppose M is a matrix in row echelon form. We say that M is in
reduced row echelon form (RREF) iff:

4. Every leading entry is equal to 1.

5. Each leading entry is the only nonzero entry in its column.

Here are the RREFs of the preceding examples.





0 1 0
0 0 1
0 0 0

















1 ∗ ∗ 0 ∗ 0 0 ∗ ∗ 0 ∗ ∗

0 0 0 1 ∗ 0 0 ∗ ∗ 0 ∗ ∗

0 0 0 0 0 1 0 ∗ ∗ 0 ∗ ∗

0 0 0 0 0 0 1 ∗ ∗ 0 ∗ ∗

0 0 0 0 0 0 0 0 0 1 ∗ ∗












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Row Reduction and Echelon Forms

We will soon give an algorithm for row reducing any matrix into an
echelon form.

Using scaling and replacement operations, any echelon form is
easily brought into reduced echelon form.

Depending on the operations used, different echelon forms may be
obtained from the same matrix. However:

Theorem 1 (Uniqueness of Echelon Forms)

Every matrix can be row reduced to exactly one reduced row
echelon form.

Daileda Echelon Forms



Pivots

Before we introduce the row reduction algorithm, we need some
terminology.

Definition

A pivot (position) in a matrix A is the location of any leading 1 in
its RREF. A pivot column is any column containing a pivot
position.

For example, since

A =







1 2 4 8

2 4 6 8

3 6 9 12







RREF
−−−→





1 2 0 0
0 0 1 0
0 0 0 1



 ,

the pivot positions of A are located in the boxes.
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Row Reduction Algorithm

Remark. Because the RREF of a matrix A is unique, the pivot
positions are the same for every echelon form (reduced or
otherwise) of A.

We will now describe how to obtain the RREF of a matrix using
row reduction.

Step 1. Choose the leftmost nonzero column and use an
interchange operation (if necessary) to put a nonzero entry at its
top. This is a pivot position.

Step 2. Use replacement operations to make every entry below
the pivot equal to zero.

Step 3. Cover the row and column containing the pivot and
repeat Steps 1 and 2 on the submatrix that remains.
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This will bring your matrix into row echelon form. To reduce it:

Step 4. Moving from right to left, scale each leading entry to 1 (if
necessary) and use replacements to make all entries above it equal
to 0.

Remarks.

The book gives 5 steps, but we’ve combined the first two here.

This algorithm proves that every matrix has a reduced echelon
form. It does not prove, however, that it is unique. We will
take this for granted for now.

A judicious choice of the pivot entry in Step 1 can be
sometimes be helpful.

As long as we only use elementary row operations, we are free
to deviate from this algorithm if it is more efficient to do so.
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Example

Example 1

Find the RREF of








3 9 −4 −2 3
3 9 −5 6 20
−1 −3 2 1 −1
1 3 −1 2 6









.

Solution. Because the leftmost column is nonzero, it is a pivot
column. It already has a nonzero entry at the top, but it is more
convenient to put the 1 in the pivot position by swapping the first
and last rows:









1 3 −1 2 6
3 9 −5 6 20
−1 −3 2 1 −1
3 9 −4 −2 3









.

Daileda Echelon Forms



Now use replacements to eliminate the entries below the pivot:









1 3 −1 2 6
0 0 −2 0 2
0 0 1 3 5
0 0 −1 −8 −15









.

If we block out the row and column containing the pivot, the
leftmost nonzero column is now the third, and the pivot position is
shown below:









1 3 −1 2 6

0 0 −2 0 2

0 0 1 3 5
0 0 −1 −8 −15









.

We are free to put any nonzero entry in the pivot position. The
most efficient thing to do is scale row 2 by -1/2 first.
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We then have








1 3 −1 2 6

0 0 1 0 −1
0 0 1 3 5
0 0 −1 −8 −15









.

Now use replacements to eliminate the entries below the second
pivot:









1 3 −1 2 6

0 0 1 0 −1
0 0 0 3 6
0 0 0 −8 −16









.

Blocking out the current pivot, the leftmost nonzero column is now
the fourth. The pivot is in the (3, 4)-entry.
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Again to save us some trouble later, we scale the fourth row by
1/3 before proceeding:











1 3 −1 2 6

0 0 1 0 −1

0 0 0 1 2
0 0 0 −8 −16











.

Now use replacement to eliminate everything below the current
pivot:











1 3 −1 2 6

0 0 1 0 −1

0 0 0 1 2
0 0 0 0 0











.
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Blocking out the row and column of the most recent pivot, we are
only left with zero.

We have therefore arrived at an echelon form.

The leading entries are all 1, so no scaling is needed. We simply
need two replacements to eliminate the entries above them:











1 3 −1 2 6

0 0 1 0 −1

0 0 0 1 2
0 0 0 0 0











−2R3+R1→R1
−−−−−−−−−→











1 3 −1 0 2

0 0 1 0 −1

0 0 0 1 2
0 0 0 0 0











.
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And finally:











1 3 −1 0 2

0 0 1 0 −1

0 0 0 1 2
0 0 0 0 0











R2+R1→R1
−−−−−−−→











1 3 0 0 1

0 0 1 0 −1

0 0 0 1 2
0 0 0 0 0











This is the reduced row echelon form.

Remarks.

Many computer algebra systems (Maple, Matlab,
Mathematica, etc.) include routines for computing reduced
row echelon forms.

Although understanding the row reduction algorithm is
important, we will frequently omit the steps involved in
computing the RREF of a matrix.
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Echelon Forms and Linear Systems

We motivate the general situation with an example.

Example 2

Solve the system

3x1 + 9x2 − 4x3 − 2x4 = 3,

3x2 + 9x2 − 5x3 + 6x4 = 20,

−x1 − 3x2 + 2x3 + x4 = −1,

x1 + 3x2 − x3 + 2x4 = 6.

Solution. The augmented matrix of this system is just the matrix
of the preceding example.
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We have just seen that row reduction leads to the RREF











1 3 0 0 1

0 0 1 0 −1

0 0 0 1 2
0 0 0 0 0











,

which corresponds to the equivalent system

x1 +3x2 = 1
x3 = −1

x4 = 2

(the last equation is 0=0, which we will omit).

Notice that any choice of x2 easily leads to a solution of the
system.
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We therefore have the parametric solution

x1 = 1− 3x2,
x3 = −1,
x4 = 2,

in which x2 is a free variable.

In general, given a linear system, the variables corresponding to
pivot columns of the augmented matrix are called basic variables.
The variables in non-pivot columns are called free variables.

Because of the structure of the RREF, it is easy to solve for the
basic variable in terms of the free variables, and any choice of
values for the free variables then gives a solution of the system.
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Example

Example 3

Solve the system

5x1 − x2 + 5x3 + 9x4 − 2x5 = −3,

3x1 + 6x3 + 9x4 − x5 = 4,

2x1 + 4x3 + 6x4 − x5 = 0.

Solution. We have




5 −1 5 9 −2 −3
3 0 6 9 −1 4
2 0 4 6 −1 0





RREF
−−−→





1 0 2 3 0 4
0 1 5 6 0 7
0 0 0 0 1 8



 .
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This corresponds to the system

x1 +2x3 +3x4 = 4,
x2 +5x3 +6x4 = 7,

x5 = 8.

The free variables are x3 and x4 so that the solutions have the
parametric form

x1 = 4− 2x3 − 3x4,
x2 = 7− 5x3 − 6x4,
x3 is free,
x4 is free,
x5 = 8.
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Existence, Uniqueness and Echelon Forms

Using echelon forms, we can give complete answers to the
questions of existence and uniqueness of solutions to linear
systems.

Our results show that a linear system is guaranteed to be
consistent iff the RREF of its augmented matrix does not yield an
equation of the form 0 = b, where b is nonzero.

That is, the RREF cannot contain a row of the form

(0 0 0 · · · 0 b), with b 6= 0.

Equivalently, there is not a pivot in the last column of the
augmented matrix.
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Furthermore, if the system is consistent, it will have a unique
solution iff there are no free variables. Otherwise it has infinitely
many solutions.

So we will have a unique solution iff the augmented matrix has a
pivot in every column except the last.

To summarize:

Theorem 2

A linear system is consistent iff its augmented matrix does not
have a pivot in the last column. In this case, the solution is unique
iff there is a pivot in every column but the last. Otherwise there
are infinitely many solutions.
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Example

Example 4

Show that a consistent system of 4 linear equations in 5 unknowns
must have infinitely many solutions.

Solution. Because there cannot be more than one pivot per row,
the augmented matrix of a 4× 6 system can have at most 4 pivots.

Thus we cannot have a pivot for each of the 5 variables. So the
solution cannot be unique.

Since we are told the system is consistent, according to Theorem 2
the only remaining possibility is that there are infinitely many
solutions.
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Remarks

We will say that an m × n linear system is underdetermined if
m < n (i.e. there are more variables than equations), and
overdetermined if m > n (i.e. there are more equations that
variables).

The result of Example 4 is easily generalized: a consistent
underdetermined system must have infinitely many solutions!

Put another way, in order for a linear system to have a unique
solution, there must be at least as many equations as unknowns
(this condition does not, of course, guarantee the system is
consistent).
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