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Introduction

Today we will introduce vectors and vector arithmetic in R
n.

As we will see, we can represent systems of multiple equations as
single vector equations.

In particular, we can use vector arithmetic to represent linear
systems as equations involving linear combinations of vectors.

This naturally leads to the notion of the span of a set of vectors,
and gives us a new way to talk about the existence of solutions to
linear systems.
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Vectors

Given a positive integer n, an n × 1 matrix is called a (column)
vector.

Thus, a vector has the form

v =











v1
v2
...
vn











,

where each vi is a real (or complex) number.

We let Rn (or Cn) denote the set of all such vectors.

We will write v ∈ R
n to indicate that v is a vector in R

n.
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So, for example, we have:

(

1√
2

)

,

(

0
−3/2

)

∈ R
2,





1/5
7
π



 ,





−6√
7
4



 ∈ R
3,









0
1
2
3









,









4
3
2
1









∈ R
4,

etc.
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As with matrices, we say that two vectors are equal provided their
corresponding entries are equal.

That is, if

u =











u1
u2
...
un











, v =











v1
v2
...
vn











,

are vectors in R
n, then

u = v ⇔ ui = vi for every i .

Remark. We cannot directly compare vectors with different
numbers of entries.
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Vector Arithmetic

We define the sum of two vectors in R
n to be

u+ v =











u1
u2
...
un











+











v1
v2
...
vn











=











u1 + v1
u2 + v2

...
un + vn











,

i.e. we add two vectors by adding their corresponding entries.
Given a vector v ∈ R

n, we define the scalar multiple of v by a real
number c ∈ R to be

cv = c











v1
v2
...
vn











=











cv1
cv2
...

cvn











.

That is, we scale a vector v by a real number c by multiplying
every entry of v by c .
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Given a vector v ∈ R
n, we define its negative to be

−v = (−1)v,

which is simply the vector whose entries are the negatives of those
in v. We define vector subtraction by

u− v = u+ (−v).

We define the zero vector to be

0 =











0
0
...
0











∈ R
n.

Strictly speaking, there is a different zero vector for each n, but we
will use the same symbol for all of them.
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Algebraic Properties of Vectors

Vector arithmetic inherits many familiar properties from the
ordinary arithmetic of real numbers.

Specifically, it is not hard to argue that:

Theorem 1 (Algebraic Properties of Vectors)

For any vectors u, v,w ∈ R
n and any scalars c , d ∈ R we have:

1. u+ v = v + u 5. c(u+ v) = cu+ cv
2. (u+ v) + w = u+ (v + w) 6. (c + d)v = cv + dv
3. v + 0 = 0+ v = v 7. c(dv) = (cd)v
4. v + (−v) = (−v) + v = 0 8. 1v = v
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Other algebraic properties can be deduced from these. For
instance, since 0 + 0 = 0:

0v = (0 + 0)v = 0v + 0v.

Thus
0 = 0v + (−0v)

= (0v + 0v) + (−0v)

= 0v + (0v + (−0v))

= 0v + 0 = 0v.

That is, 0v = 0.

This can, of course, be derived directly from the definition of scalar
multiplication, but this approach will be useful later on when we
deal with abstract vector spaces.
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Linear Combinations

Given vectors v1, v2, . . . , vk ∈ R
n and scalars c1, c2, . . . , ck ∈ R,

the vector
v = c1v1 + c2v2 + · · ·+ ckvk

is called the linear combination of v1, v2, . . . , vk with weights
c1, c2, . . . , ck .

Remark. Technically, addition is only defined between pairs of
vectors. But the associative property of vector addition, namely

(u+ v) + w = u+ (v + w),

can be used to show that an arbitrary (finite) sum of vectors is the
same regardless of how parentheses are inserted.
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Vector Equations and Linear Systems

We can use vector equations involving linear combinations to
represent linear systems.

For instance, consider the linear system

2x1 − x3 = −3,

x1 + 5x2 + 3x3 = 1,

− x2 + x3 = 2.

This is the same as the single vector equation





−3
1
2



 =





2x1 − x3
x1 + 5x2 + 3x3

−x2 + x3



 = x1





2
1
0



+ x2





0
5
−1



+ x3





−1
3
1



 .
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In general, a linear system

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a21x2 + · · · + a2nxn = b2,

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm,

with coefficient matrix and “constant vector”

A =











a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn











=
(

a1 a2 · · · an

)

and b =











b1
b2
...
bm











,

is equivalent to the vector equation

x1a1 + x2a2 + · · ·+ xnan = b.
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Put another way, the vector equation

x1a1 + x2a2 + · · ·+ xnan = b

is equivalent to the system with augmented matrix

(

a1 a2 · · · an b
)

.

Thus, a linear system has a solution iff the “constant vector” b is a
linear combination of the columns of the coefficient matrix.
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Example

Example 1

If

a1 =





1
−2
0



 , a2 =





0
1
2



 , a3 =





5
−6
8



 , b =





2
−1
6



 ,

determine whether or not b is a linear combination of a1, a2, a3.

Solution. The augmented matrix of the corresponding linear
system is





1 0 5 2
−2 1 −6 −1
0 2 8 6





RREF−−−→





1 0 5 2
0 1 4 3
0 0 0 0



 .
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Since the reduced echelon form does not have a pivot in the last
column, this system is consistent, which means that

b is a linear combination of a1, a2, a3.

In fact, since the parametric form of the solution set is

x1 = 2− 5x3,

x2 = 3− 4x2,

x3 is free,

we can find specific weights that yield b simply by choosing x3. So,
for example, with x3 = 2 we have

b = − 8a1 − 5a2 + 2a3.
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Span

Definition

Given vectors v1, v2, . . . , vk ∈ R
n (which need not be distinct), we

define
Span{v1, v2, . . . , vk} ⊆ R

n

to be the set of all linear combinations of v1, v2, . . . , vk .

Thus, a vector b belongs to Span{v1, v2, . . . , vk} if and only if the
system with augmented matrix

(

v1 v2 · · · vk b
)

is consistent. In this case we write

b ∈ Span{v1, v2, . . . , vk}.
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Example

In Example 1 we showed that if

a1 =





1
−2
0



 , a2 =





0
1
2



 , a3 =





5
−6
8



 , b =





2
−1
6



 ,

then b is a linear combination of a1, a2, a3.

Thus b ∈ Span{a1, a2, a3}.
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Let v1, v2, . . . , vk ∈ R
n. Since

0 = 0v1 + 0v2 + · · ·+ 0vk ,

we always have
0 ∈ Span{v1, v2, . . . , vk}.

Furthermore, since

vi = 0v1 + 0v2 + · · · + 1vi + · · ·+ 0vk ,

we also have

vi ∈ Span{v1, v2, . . . , vk} for all i .
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Even more generally, suppose that v,w ∈ Span{v1, v2, . . . , vk} and
that c ∈ R is a scalar.

Then, by the definition of the span, we can find weights so that

v = c1v1 + c2v2 + · · · + ckvk ,

w = d1v1 + d2v2 + · · · + dkvk .

Because vector addition is commutative, this means that

v + w = (c1v1 + d1v1) + (c2v2 + d2v2) + · · ·+ (ckvk + ckvk)

= (c1 + d1)v1 + (c2 + d2)v2 + · · ·+ (ck + dk)vk ,

which also belongs to Span{v1, v2, . . . , vk}.
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Also, because scalar multiplication is distributive and associative:

cv = c(c1v1 + c2v2 + · · ·+ ckvk)

= c(c1v1) + c(c2v2) + · · ·+ c(ckvk)

= (cc1)v1 + (cc2)v2 + · · ·+ (cck)vk ,

which belongs to Span{v1, v2, . . . , vk}, too.

Because of these properties, one says that Span{v1, v2, . . . , vk} is
closed under vector addition and scalar multiplication.

Remark. This proves that Span{v1, v2, . . . , vk} is a subspace of
R
n (a term we will define later).
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The Geometry of Vectors

We can visualize vectors in R
2 and R

3 as arrows, exactly as in
Calculus III.

In these cases, the addition law we have defined here is precisely
the usual “tip to tail” rule.

And scalar multiplication has the same “scaling” effect.

We can use these facts to give a geometric description of the span
(in low dimensions).
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Span{v}

If v 6= 0 belongs to R
2 or R3, then Span{v} consists of all the

scalar multiples of v.

These are all the vectors that have the same (or opposite)
direction as v.

If we draw our vectors with their tails at the origin, this means that
Span{v} can be visualized as the line through the origin with
direction given by v.

Because of this, we will sometimes refer to Span{v} as the “line
through v,” even when working in R

n in general.
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Span{u, v}

Suppose u, v are nonzero, non-parallel vectors in R
2 (or R3).

Let x = au+ bv belong to Span{u, v}.

We have just seen that as b varies, bv creates a line through the
origin.

The geometric effect of adding au is to translate this line in the
direction of u.

So as we vary both a and b, the vector x = au+ bv draws out a
series of parallel lines, all passing through a common line.

That is, Span{u, v} describes the plane through the origin
containing both u and v.
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Remark

Because c0 = 0 for every scalar c , we find that

Span{0} = {0}.

That is, the span of the zero vector is just the zero vector.

And because 0+ v = v, this also shows that

Span{0, v1, v2, . . . , vk} = Span{v1, v2, . . . , vk},

i.e. we can always remove zero vectors without changing the span.
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