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Recall

The linear system with coefficient matrix A = (a1 a2 · · · an)
and “constant vector” b is represented by the augmented matrix

(A b),

and is equivalent to the vector equation

x1a1 + x2a2 + · · ·+ xnan = b.

We can put the list of variables x1, x2, . . . , xn into a vector as well:

x =











x1
x2
...
xn











.
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The Matrix-Vector Product

We now seek to introduce notation that will express the entire
linear system (coefficients, variables and constants) using only
matrices and vectors.

With this in mind, we define the matrix-vector product to be

Ax = (a1 a2 · · · an)











x1
x2
...
xn











= x1a1 + x2a2 + · · · + xnan.

That is, the product of a matrix A (on the left) with a vector (on
the right) is the linear combination of the columns of A obtained
by using the entries of x as weights.
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Remarks

We call Ax a product and use multiplicative notation for
reasons that will become clear shortly.

We can only multiply an m × n matrix by a vector in R
n.

That is, in Ax the matrix must have as many columns as the
vector has entries.

If we multiply an m × n matrix by a vector in R
n, the result is

a vector in R
m.

The linear system with augmented matrix (A b) can now be
compactly represented as

Ax = b.
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Example

Let’s multiply the matrix and vector

A =









1 4 0
4 2 0
1 5 −2
−1 4 −4









and v =





−3
3
4



 .

According to the definition we have

Av = −3









1
4
1
−1









+3









4
2
5
4









+4









0
0
−2
−4









=









−3
−12
−3
3









+









12
6
15
12









+









0
0
−8
−16
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−3
−12
−3
3









+









12
6
15
12









+









0
0
−8
−16









=









9
−6
4
−1









.

Notice that we first scaled the columns of A by the entries of v
and then added the resulting vectors.

When working by hand, it is usually more efficient to work row by
row.

That is, we scale the entries in the first row of A and add them,
then scale the entries in the second row of A and add them, etc.
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Thus, we would more quickly write

Av =









1 4 0
4 2 0
1 5 −2
−1 4 −4













−3
3
4





=









−3 · 1 + 3 · 4 + 4 · 0
−3 · 4 + 3 · 2 + 4 · 0

−3 · 1 + 3 · 5 + 4 · (−2)
(−3)(−1) + 3 · 4 + 4(−4)









=









9
−6
4
−1









.

The textbook calls this the row-vector rule for computing the
matrix-vector product.
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The Column Space

Given an m × n matrix A = (a1 a2 · · · an), we define its
column space to be

ColA = Span{a1, a2, . . . , an} ⊆ R
m.

This gives us another way to talk about the existence of solutions
to linear systems: the equation Ax = b has a solution iff b ∈ ColA.

Question. Given an m × n matrix A, when is it possible to solve
Ax = b for every b ∈ R

m?

Equivalently, when do we have

ColA = R
m?
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Notice that if we compute the RREF of the augmented matrix
(A b), the first n columns (all but the last) will give the RREF of
A itself.

To avoid the possibility of having a pivot in the last column of
(A b) we must have a pivot in every row of A.

Therefore:

Theorem 1

Let A be an m × n matrix. The following are equivalent (TFAE):

1. For every b ∈ R
m the equation Ax = b has a solution.

2. Every vector in R
m is a linear combination of the cols. of A.

3. ColA = R
m.

4. A has a pivot in every row.
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Examples

Example 1

Do the columns of

A =





−2 −3 4 3
4 −2 3 1
2 3 −5 4





span R
3?

Solution. We (partially) row reduce:

A
2R1+R2→R2−−−−−−−−→
R1+R3→R3





−2 −3 4 3
0 −8 11 7
0 0 −1 7



 = B .
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Because B is in echelon form (although not reduced), we see that
A does indeed have a pivot in every row.

Therefore,

Yes, the columns of A span R
3.

Example 2

Let A be an m × n matrix. If m > n, can the columns of A span
R
m?

Solution. Because there cannot be more than one pivot per row or
column,

total # pivots of A ≤ min{m, n} = n < m.
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That is, there cannot be one pivot in each row of A.

Thus the columns of A do not span R
m.

Put another way, if we have more equations than variables in a
linear system (the system is overdetermined), it is always possible
to choose the RHS constants so that the system is inconsistent.
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Properties of the Matrix-Vector Product

Given a matrix A, so far we have been concerned with whether or
not we can solve Ax = b for a given b.

That is, if Ax = b, what does b tell us about x?

Let’s turn this question around. If we change x, what happens to
Ax?

Specifically, what happens if we apply our vector operations
(addition and scalar multiplication) to x?
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Let A =
(

a1 a2 · · · an
)

be m × n and let x, y ∈ R
n.

Using the algebraic properties of vector arithmetic, we then have

A(x+ y) = A





















x1
x2
...
xn











+











y1
y2
...
yn





















= A











x1 + y1
x2 + y2

...
xn + yn











= (x1 + y1)a1 + (x2 + y2)a2 + · · ·+ (xn + yn)an

= x1a1 + y1a1 + x2a2 + y2a2 + · · ·+ xnan + ynan

= x1a1 + x2a2 + · · ·+ xnan + y1a1 + y2a2 + · · ·+ ynan

= Ax+ Ay.

That is, the matrix-vector product distributes over vector addition!
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Likewise, if c ∈ R, we have

A(cx) = A











cx1
cx2
...

cxn











= (cx1)a1 + (cx2)a2 + · · ·+ (cxn)an

= c(x1a1) + c(x2a2) + · · ·+ c(xnan)

= c (x1a1 + x2a2 + · · · + xnan)

= c(Ax).

In words, the matrix-vector product commutes with scalar
multiplication!
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Let’s record these observations.

Theorem 2 (Properties of Matrix-Vector Multiplication)

Let A be an m × n matrix, x, y ∈ R
n and c ∈ R. Then:

1. A(x+ y) = Ax+ Ay

2. A(cx) = c(Ax)

It is because of these properties that we call the matrix-vector
operation Ax “mutliplication.”

Remark. Given a matrix A, the rule x 7→ Ax defines a function

R
n → R

m.

The properties of matrix-vector multiplication given above show
that this function is linear.
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Solutions of Linear Systems (Again)

We are now in a position to explain the parametric structure of
solutions to linear systems more precisely.

A linear system of the form Ax = 0 is called homogeneous. A linear
system of the form Ax = b with b 6= 0 is called inhomogeneous.

Definition

Given a matrix A, the set of solutions to the homogeneous
equation Ax = 0 is called the null space of A:

NullA = {x ∈ R
n |Ax = 0}.

It turns out that the solutions to the general system Ax = b are
related to the null space of A.
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Fix b ∈ R
m and consider the matrix equation Ax = b.

Suppose that we have at least one solution x0 ∈ R
n.

Consider any other solution y ∈ R
n.

Using the properties of the matrix-vector product we find that

0 = Ay − Ax0 = Ay+ (−1)(Ax0) = Ay + A(−x0) = A(y − x0).

Hence, y − x0 = z ∈ NullA,or y = x0 + z, with z ∈ NullA.

We write this as y ∈ x0 + NullA.

On the other hand, suppose we choose any y ∈ x0 + NullA.
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This means that y = x0 + z for some z which satisfies Az = 0.

Hence
Ay = A(x0 + z) = Ax0 + Az = b+ 0 = b.

This shows that the complete set of solutions to Ax = b is given by

x0 + NullA,

where x0 is any particular solution.

Theorem 3

Let A be an m × n matrix. If the equation Ax = b has at least one
solution x0, then the complete set of solutions to Ax = b is
described by

x = x0 + z,

where z is any vector satisfying Az = 0.
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This says that solution sets to equations of the form Ax = b are
“structurally” the same: they are just translates of the null space
of A (if they are nonempty).

In particular, if we can describe NullA in some “nice” way, then we
get a “nice” description of the set of solutions to Ax = b in
general.

Homogeneous equations are somewhat easier to solve than
inhomogeneous equations. First of all, they always have solutions,
since A0 = 0 (we always have 0 ∈ NullA).

To completely solve Ax = 0 we must row reduce
(

A 0
)

.

However, applying any sequence of elementary row operations to
(

A 0
)

will yield a matrix of the form
(

B 0
)

.
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So the final column is redundant (it never changes) and can be
ignored. That is, we can simply row reduce the coefficient matrix
A and just remember that there is an “invisible” final column of
zeros.

Example 3

Compute the null space of

A =





−2 −3 4 3
4 −2 3 1
2 3 −5 4



 .

Solution. Row reduction of A yields





−2 −3 4 3
4 −2 3 1
2 3 −5 4





RREF
−−−→





1 0 0 1/4
0 1 0 −21/2
0 0 1 −7



 .
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This tells us that the equation Ax = 0 is equivalent to the system

x1 +1
4
x4 = 0,

x2 −21
2
x4 = 0,

x3 −7x4 = 0.

Thus, x4 is free and

x =









x1
x2
x3
x4









=









−1
4
x4

21
2
x4

7x4
x4









= x4









−1/4
21/2
7
1









.

Hence

NullA = Span























−1/4
21/2
7
1























.
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Example 4

Solve the matrix equation





−2 −3 4 3
4 −2 3 1
2 3 −5 4



 x =





2
6
4



 .

Solution. We observe that

x0 =









1
1
1
1









is a particular solution.
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Therefore, by the preceding example, the general solution is given
by

x =









1
1
1
1









+ x4









−1/4
21/2
7
1









.

Remark. Row reduction of the augmented matrix yields





−2 −3 4 3 2
4 −2 3 1 6
2 3 −5 4 4





RREF
−−−→





1 0 0 1/4 5/4
0 1 0 −21/2 −19/2
0 0 1 −7 −6



 .
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This tells us that x4 is free and

x =









x1
x2
x3
x4









=













5
4
− 1

4
x4

−19
2
+ 21

2
x4

−6 + 7x4

x4













=









5/4
−19/2
−6
0









+ x4









−1/4
21/2
7
1









.

Although this appears to be different than the solution we found
above, as we vary x4 in both cases we get exactly the same set of
vectors.

What has happened is we have replaced the particular solution
(1, 1, 1, 1) with (5/4,−19/2,−6, 0).
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Example 5

Compute the null space of

A =









2 −2 −1 3 16
1 −1 1 −1 3
3 −3 0 −5 −1
−1 1 0 2 1









.

Solution. Row reduction gives









2 −2 −1 3 16
1 −1 1 −1 3
3 −3 0 −5 −1
−1 1 0 2 1









RREF
−−−→









1 −1 0 0 3
0 0 1 0 −4
0 0 0 1 2
0 0 0 0 0
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Therefore the equation Ax = 0 is equivalent to the system

x1 −x2 +3x5 = 0,
x3 −4x5 = 0,

x4 +2x5 = 0.

The variables x2 and x5 are free, so that

x =













x1
x2
x3
x4
x5













=













x2 − 3x5
x2
4x5
−2x5
x5













= x2













1
1
0
0
0













+ x5













−3
0
4
−2
1













.

Daileda Matrix-Vector Multiplication



Because x2 and x5 can take on any values, this means that

NullA = Span



































1
1
0
0
0













,













−3
0
4
−2
1



































.

This happens in general: the solutions to Ax = 0 (the null space of
A) can always be described as linear combinations of certain
vectors using the free variables as weights.

We will discuss the details next time.
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