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Introduction

Today we will apply the theory and techniques we have developed
for solving linear systems to a number of different problems.

We will primarily be interested in obtaining and understanding
solutions in specific situations.

We will return to several of these problems later when we have
more advanced tools at our disposal.
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Balancing a Chemical Equation

Example 1

Limestone (CaCO3) neutralizes hydronium (H3O) in acid rain
through the chemical reaction

H3O+ CaCO3 → H2O+ Ca + CO2

Balance this chemical equation.

Solution. Let n1, n2, n3, n4, n5 be the amounts of each reactant (in
the order given).

Each molecule in the reaction can be represented by a vector
listing the number of atoms of each element that are present.
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If we order the elements by atomic weight (H, C, O, Ca), the
chemical reaction yields the vector equation

n1







3
0
1
0







+ n2







0
1
3
1







= n3







2
0
1
0







+ n4







0
0
0
1







+ n5







0
1
2
0







.

This is equivalent to the homogeneous equation An = 0, where

n =









n1
n2
n3
n4
n5









and A =







3 0 −2 0 0
0 1 0 0 −1
1 3 −1 0 −2
0 1 0 −1 0







.
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Row reduction yields







3 0 −2 0 0
0 1 0 0 −1
1 3 −1 0 −2
0 1 0 −1 0







RREF
−−−→







1 0 0 0 −2
0 1 0 0 −1
0 0 1 0 −3
0 0 0 1 −1







so that n5 is free and
n1 = 2n5,

n2 = n5,

n3 = 3n5,

n4 = n5.

Choosing n5 = 1 (the smallest possible value) we have the
balanced equation

2H3O+ CaCO3 → 3H2O+ Ca + CO2.
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Antidifferentiation

Example 2

Compute

∫

(x3 − 2x)ex dx .

Solution. Based on experience, we assume the antiderivative has
the form

∫

(x3 − 2x)ex dx = (a3x
3 + a2x

2 + a1x + a0
︸ ︷︷ ︸

p(x)

)ex + C .

Differentiating both sides yields

(x3 − 2x)ex = p(x)ex + p′(x)ex

= (a3x
3 + (3a3 + a2)x

2 + (2a2 + a1)x + a1 + a0)e
x .
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Cancelling ex and comparing coefficients of both sides gives us

a3 = 1,
a2 +3a3 = 0,

a1 +2a2 = −2,
a0 +a1 = 0.

Row reducing the augmented matrix we have







0 0 0 1 1
0 0 1 3 0
0 1 2 0 −2
1 1 0 0 0







RREF
−−−→







1 0 0 0 −4
0 1 0 0 4
0 0 1 0 −3
0 0 0 1 1







Thus a0 = −4, a1 = 4, a2 = −3 and a3 = 1, so that
∫

(x3 − 2x)ex dx = (x3 − 3x2 + 4x − 4)ex + C .
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Network Flow

Consider the network with flow pattern shown below:
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The arrows along each segment indicate flow direction in the
amount indicated. The total flow into every node must equal the
total flow out.
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Example 3

(a) Find the general flow pattern of the network.

(b) Assuming all flows are nonnegative, what are the smallest
possible values of x2, x3, x4 and x5.?

Solution. Working node by node we have:

A: x2 + 30 = x1 + 80

B: x3 + x5 = x2 + x4

C: x6 + 100 = x5 + 40

D: x4 + 40 = x6 + 90

E: x1 + 60 = x3 + 20

⇔

x1 −x2 = −50
x2 −x3 +x4 −x5 = 0

x5 −x6 = 60
x4 −x6 = 50

x1 −x3 = −40
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This has the augmented matrix









1 −1 0 0 0 0 −50
0 1 −1 1 −1 0 0
0 0 0 0 1 −1 60
0 0 0 1 0 −1 50
1 0 −1 0 0 0 −40









RREF
−−−→









1 0 −1 0 0 0 −40
0 1 −1 0 0 0 10
0 0 0 1 0 −1 50
0 0 0 0 1 −1 60
0 0 0 0 0 0 0









So x3 and x6 are free, and

x1 = x3 − 40,

x2 = x3 + 10,

x4 = x6 + 50,

x5 = x6 + 60.

In order for xi to be nonnegative for all i we must have x3 ≥ 40
and x6 ≥ 0.
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The smallest possible values of x2, x3, x4 and x5 occur when we
have equality in both cases:

x2 = 50, x3 = 40, x4 = 50, x5 = 60.

Daileda Applications



Polynomial Interpolation

Consider the problem of interpolating data by a polynomial.

Suppose we are given n data points

(x1, y1), (x2, y2), . . . , (xn, yn)

with xi 6= xj for all i 6= j .

We seek a polynomial of degree ≤ n − 1,

p(X ) = c0 + c1X + · · ·+ cn−1X
n−1,

so that
p(xi) = yi for every i .
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This gives us n equations

c0 + c1xi + c2x
2
i + · · · + cn−1x

n−1
i = yi , 1 ≤ i ≤ n

in the n variables c0, c1, . . . , cn.

The coefficient matrix of this system is the Vandermonde matrix

V = (x j−1
i ) =








1 x1 x2 · · · xn−1
1

1 x2 x22 · · · xn−1
2

...
...

...
. . .

...
1 xn x2n · · · xn−1

n








.

We will (eventually) show that a Vandermonde matrix always has a
pivot in each row and column.
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Thus, the system

Ac = y, y =








y1
y2
...
yn








, c =








c0
c1
...

cn−1








,

has a unique solution for c which can be found by row reducing the
augmented matrix

(
V y

)
.

Therefore there is a unique polynomial of degree ≤ n− 1 that
passes through our data points.
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Example 4

Find the interpolating polynomial of the points (1,−1), (2, 1),
(3,−2), (4, 1).

Solution. We set up and row reduce the Vandermonde system:







1 1 1 1 −1
1 2 4 8 1
1 3 9 27 −2
1 4 16 64 1







RREF
−−−→







1 0 0 0 −19
0 1 0 0 89/3
0 0 1 0 −27/2
0 0 0 1 11/6







.

So the interpolating polynomial is

p(X ) = −19 +
89

3
X −

27

2
X 2 +

11

6
X 3 .
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Probabilities

Suppose we have an object that can be in one of n states with
probabilities P1,P2, . . . ,Pn, so that

P1 + P2 + · · ·+ Pn = 1.

Furthermore, if the object is in state i , there is a transition

probability Qi→j that it will transition to state j . We assume that

Qi→1 + Qi→2 + · · · + Qi→n = 1.

Together these probabilities satisfy

Pi = P1Q1→i + P2Q2→i + · · · + PnQn→i , 1 ≤ i ≤ n.
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In vector form:







P1

P2

...
Pn








=








P1Q1→1 + P2Q2→1 + · · ·+ PnQn→1

P1Q1→2 + P2Q2→2 + · · ·+ PnQn→2

...
P1Q1→n + P2Q2→n + · · · + PnQn→n








= (Qj→i )








P1

P2

...
Pn








.

This is equivalent to the homogeneous system

(Qj→i − δij)P = 0,

where δij is the Kronecker delta:

δij =

{

1 if i = j ,

0 otherwise.
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We will (eventually) see that our hypotheses on Qj→i imply that

(Qj→i − δij)P = 0

always has a nontrivial solution, which can be scaled to be a
probability vector (a vector whose entries sum to 1).

Example 5

Consider the system with transition matrix

(Qj→i) =





0.6 0.1 0.1
0.3 0.8 0.2
0.1 0.1 0.7



 .

Find the probability Pi of being in state i = 1, 2, 3.
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Solution. We row reduce (Qj→i − δij):




−0.4 0.1 0.1
0.3 −0.2 0.2
0.1 0.1 −0.3




RREF
−−−→





1 0 −0.8
0 1 −2.2
0 0 0



 .

This yields

P =





P1

P2

P3



 = P3





0.8
2.2
1



 .

To get a probability vector we set

P3(0.8 + 2.2 + 1) = 1 ⇒ P3 =
1

4
.

Thus

P =





1/5
11/20
1/4



 .
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Electrical Networks

Ohm’s Law states that, as current flows through a resistance in an
electrical circuit, the difference in the electric potential between
the ends of the resistance (the “voltage drop”) is proportional to
the current flowing through it. That is

V = IR ,

where V is the electrical potential (in volts), I is the current (in
amperes), and R is the resistance (in ohms).

Kirchhoff’s Voltage Law states that the sum of the voltage drops
around a loop in a circuit is equal to the sum of the voltage
sources in that loop.
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Example 6

Determine the loop currents in the following circuit.

30 V

20 V

10 V

40 V 4 �

3 �

5 �

4 �1 �

7 �

2 �

I I

II

1 4

32
6 �

Solution. We apply Ohm’s and Kirchhoff’s Laws to each loop.
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This yields the system

I1 + 7(I1 − I2) + 4(I1 − I4) = 40,

2I2 + 6(I2 − I3) + 7(I2 − I1) = 30,

3I3 + 5(I3 − I4) + 6(I3 − I2) = 20,

4I4 + 4(I4 − I1) + 5(I4 − I3) = −10.

Collecting terms with common variables this becomes

12I1 − 7I2 − 4I4 = 40,

− 7I1 + 15I2 − 6I3 = 30,

− 6I2 + 14I3 − 5I4 = 20,

− 4I1 − 5I3 + 13I4 = −10.
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We construct the augmented matrix and row reduce:







12 −7 0 −4 40
−7 15 −6 0 30
0 −6 14 −5 20
−4 0 −5 13 −10







RREF
−−−→







1 0 0 0 11.43
0 1 0 0 10.55
0 0 1 0 8.04
0 0 0 1 5.84







.

Thus the loop currents are

I1 = 11.43 A, I2 = 10.55 A, I3 = 8.04 A, I4 = 5.84 A .

Question. Is it surprising that this system has a unique solution?
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