Linear Independence

Ryan C. Daileda

Trinity University
Linear Algebra

Recall

We defined matrix-vector multiplication by

$$
A \mathbf{x}=\left(\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

This enables us to express the linear system with augmented matrix $\left(\begin{array}{ll}A & \mathbf{b}\end{array}\right)$ as the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

The existence of a solution to this system is equivalent to the statement that \mathbf{b} is a linear combination of the columns of A.

That is, \mathbf{b} belongs to the column space of A :

$$
\mathbf{b} \in \operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}=\operatorname{Col} A
$$

The notion of linear independence is to uniqueness of solutions of linear systems as the notion of span is to existence.

Definition

Let $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\} \subset \mathbb{R}^{n}$. We say that the vectors in \mathcal{S} are linearly independent iff the only solution to

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{k} \mathbf{v}_{k}=\mathbf{0}
$$

is $x_{1}=x_{2}=\cdots=x_{k}=0$. Otherwise we say that the vectors in \mathbf{S} are linearly dependent.

Equivalently, $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent iff

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{k} \mathbf{v}_{k}=\mathbf{0} \Rightarrow x_{1}=x_{2}=\cdots=x_{k}=0
$$

Negating the definition of linear independence we find that $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly dependent iff the equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{k} \mathbf{v}_{k}=\mathbf{0}
$$

has a nonzero solution $\mathbf{x} \in \mathbb{R}^{k}$.

Such a nonzero solution is called a dependence relation.

Taking the vectors in the definition to be the columns of a matrix A, we find that the columns of A are linearly independent iff the only solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$.

This means that we cannot have any free variables (non-pivot columns) when we row reduce the coefficient matrix A. That is, A must have a pivot in each column.

Note that this also tells us that, when it is consistent, the inhomogeneous equation

$$
A \mathbf{x}=\mathbf{b}
$$

has exactly one solution for any \mathbf{b}. We'll come back to this fact.

Example 1

Determine whether or not the vectors

$$
\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right),\left(\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right),\left(\begin{array}{c}
9 \\
10 \\
11 \\
12
\end{array}\right) \in \mathbb{R}^{4}
$$

are linearly independent.
Solution. We put the vectors into a matrix and row reduce.

$$
\left(\begin{array}{ccc}
1 & 5 & 9 \\
2 & 6 & 10 \\
3 & 7 & 11 \\
4 & 8 & 12
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Since there is not a pivot in every column, the equation $A \mathbf{x}=\mathbf{0}$ has more than one solution. So the vectors are linearly dependent.

In fact, the nontrivial solutions to $A \mathbf{x}=\mathbf{0}$ are given by

$$
\begin{aligned}
& x_{1}=x_{3}, \\
& x_{2}=-2 x_{3}, \\
& x_{3} \text { is free. }
\end{aligned}
$$

Any nonzero choice of x_{3} yields a dependence relation among the given vectors.

Taking $x_{3}=-2$, for instance, we have

$$
-2\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)+4\left(\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right)-2\left(\begin{array}{c}
9 \\
10 \\
11 \\
12
\end{array}\right)=\mathbf{0}
$$

Example 2

Determine whether or not the vectors

$$
\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
, 1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \in \mathbb{R}^{3}
$$

are linearly independent.

Solution. We use the vectors as the columns of a matrix and row reduce:

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & 1 \\
-1 & 0 & 1
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Since we have a pivot in every column, the vectors are linearly independent.

The following result and its corollary show that there is an upper limit to how large a linearly independent subset of \mathbb{R}^{n} can be.

Theorem 1

Let $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\} \subseteq \mathbb{R}^{n}$. If $k>n$, then \mathcal{S} is linearly dependent.

Proof. If $k>n$, then the $n \times k$ coefficient matrix $A=\left(\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{k}\end{array}\right)$ is underdetermined.

By an earlier result, this means that the system $A \mathbf{x}=\mathbf{0}$ must have infinitely many solutions (since it is necessarily consistent).

In particular, it has nonzero solutions, which means the vectors in \mathcal{S} are linearly dependent.

Since every implication is logically equivalent to its contrapositive, we immediately obtain:

Corollary 1

Let $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\} \subseteq \mathbb{R}^{n}$. If \mathcal{S} is linearly independent, then $k \leq n$.

In words: the size of a linearly independent set of vectors cannot exceed the number of entries in each vector.

Although we will primarily be interested in linearly independent sets, let's take a look at the property of linear dependence first.

Notice that in the dependence relation

$$
-2 \mathbf{v}_{1}+4 \mathbf{v}_{2}+3 \mathbf{v}_{3}=\mathbf{0}
$$

we can solve for \mathbf{v}_{1} in terms of \mathbf{v}_{2} and \mathbf{v}_{3} :

$$
\mathbf{v}_{1}=-\frac{1}{2}\left(-4 \mathbf{v}_{2}-3 \mathbf{v}_{3}\right)=2 \mathbf{v}_{2}+\frac{3}{2} \mathbf{v}_{3} \in \operatorname{Span}\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\} .
$$

That is, \mathbf{v}_{1} is a linear combination of the remaining vectors \mathbf{v}_{2} and v_{3}.

Remark. It is also true that \mathbf{v}_{2} is a linear combination of \mathbf{v}_{1} and \mathbf{v}_{3}, and that \mathbf{v}_{3} is a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}, but this is not always the case for linearly dependent sets of vectors.

The most we can say in general is:

Theorem 2 (Characterization of Linearly Dependent Sets)

The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$ are linearly dependent if and only if (at least) one of the vectors is a linear combination of the others. In fact, if $\mathbf{v}_{1} \neq \mathbf{0}$, then there is a $j>1$ so that $\mathbf{v}_{j} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{j-1}\right\}$.

Proof. Because this is an "if and only if" statement, we must show that the two hypotheses imply each other.

Suppose that \mathbf{v}_{j} is a linear combination of the other vectors:

$$
\mathbf{v}_{j}=\sum_{i \neq j} c_{i} \mathbf{v}_{i}
$$

Then

$$
\mathbf{v}_{j}-\sum_{i \neq j} c_{i} \mathbf{v}_{i}=\mathbf{0}
$$

is a dependence relation among the vectors, since the coefficient of \mathbf{v}_{j} is $1 \neq 0$. Thus the vectors are linearly dependent.

Now for the converse. Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly dependent.

This means and that

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{k} \mathbf{v}_{k}=\mathbf{0}
$$

has a nontrivial solution. Let x_{j} be any nonzero weight.

Then

$$
x_{j} \mathbf{v}_{j}=-\sum_{i \neq j} x_{i} \mathbf{v}_{i} \Rightarrow \mathbf{v}_{j}=\sum_{i \neq j} \frac{-x_{i}}{x_{j}} \mathbf{v}_{i}
$$

since $x_{j} \neq 0$. This expresses \mathbf{v}_{j} as a linear combination of the other vectors.

Now suppose we know that $\mathbf{v}_{1} \neq 0$. Let x_{j} be the nonzero weight with the largest subscript.

Then $x_{j+1}=x_{j+2}=\cdots=x_{k}=0$.
If $j=1$ this means

$$
\mathbf{0}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{k} \mathbf{v}_{k}=x_{1} \mathbf{v}_{1} \Rightarrow \mathbf{v}_{1}=\mathbf{0}
$$

since $x_{1} \neq 0$. But this contradicts our hypothesis.

So $j>1$ and

$$
\mathbf{0}=\sum_{1 \leq i \leq k} x_{i} \mathbf{v}_{i}=\sum_{i \leq j} x_{i} \mathbf{v}_{i}=\sum_{i<j} x_{i} \mathbf{v}_{i}+x_{j} \mathbf{v}_{j}
$$

As above, because $x_{j} \neq 0$ we can solve this for \mathbf{v}_{j} :

$$
\mathbf{v}_{j}=\sum_{i<j} \frac{-x_{i}}{x_{j}} \mathbf{v}_{i} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{j-1}\right\}
$$

Let $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\} \subseteq \mathbb{R}^{n}$ be a finite (ordered) list of vectors.
Since $\mathbf{0}$ is a linear combination of any given vectors (just use zero weights), the theorem tells us that

$$
\mathbf{0} \in \mathcal{S} \Rightarrow \mathcal{S} \text { is linearly dependent. }
$$

In particular
$\{\mathbf{0}\}$ is linearly dependent.

If $\mathbf{v}_{j}=\mathbf{v}_{i}$ for some $i \neq j$, then clearly \mathbf{v}_{j} is a linear combination of the other vectors. Thus

$$
\mathbf{v}_{j}=\mathbf{v}_{i} \text { for some } i \neq j \Rightarrow \mathcal{S} \text { is linearly dependent. }
$$

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$ and suppose that \mathbf{v}_{j} is a linear combination of the other vectors:

$$
\mathbf{v}_{j}=\sum_{i \neq j} c_{i} \mathbf{v}_{i}
$$

Let

$$
\mathbf{x}=\sum_{i} d_{i} \mathbf{v}_{i} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}
$$

Then

$$
\begin{aligned}
\mathbf{x} & =d_{j} \mathbf{v}_{j}+\sum_{i \neq j} d_{i} \mathbf{v}_{i}=d_{j} \sum_{i \neq j} c_{i} \mathbf{v}_{i}+\sum_{i \neq j} d_{i} \mathbf{v}_{i} \\
& =\sum_{i \neq j}\left(d_{j} c_{i}+d_{i}\right) \mathbf{v}_{i} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \widehat{\mathbf{v}}_{j}, \ldots, \mathbf{v}_{k}\right\}
\end{aligned}
$$

where the "hat" indicates that \mathbf{v}_{j} is to be omitted from the list.

This shows that every vector in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ lies in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \widehat{\mathbf{v}_{j}}, \ldots, \mathbf{v}_{k}\right\}$.

The reverse statement is also true, since every vector that is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \widehat{\mathbf{v}_{j}}, \ldots, \mathbf{v}_{k}$ is necessarily a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ (just take the \mathbf{v}_{j} weight to be zero).

This proves:

Theorem 3

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$. If \mathbf{v}_{j} is a linear combination of the other vectors, then

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \widehat{\mathbf{v}}_{j}, \ldots, \mathbf{v}_{k}\right\} .
$$

Example

Consider the reduced matrix

$$
\begin{aligned}
A & =\left(\begin{array}{cccccccc}
1 & -2 & 0 & 1 & 4 & 0 & 0 & -3 \\
0 & 0 & 1 & -1 & 3 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{llllllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5} & \mathbf{a}_{6} & \mathbf{a}_{7} & \mathbf{a}_{8}
\end{array}\right) .
\end{aligned}
$$

Notice that the nonpivot columns are linear combinations of the pivot columns to the left.
By Theorem 3, this means
$\operatorname{Col} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}, \mathbf{a}_{6}, \mathbf{a}_{7}, \mathbf{a}_{8}\right\}=\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{6}, \mathbf{a}_{7}\right\}$.

We can use Theorem 3 to devise an algorithm for constructing linearly independent spanning sets.
Let $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\} \subseteq \mathbb{R}^{n}$.

1. If \mathcal{S} is linearly dependent, choose a vector \mathbf{v} that is a linear combination of the others. Let

$$
\mathcal{S}^{\prime}=\mathcal{S} \backslash\{\mathbf{v}\} .
$$

Note that Theorem 3 tells us that

$$
\text { Span } \mathcal{S}=\operatorname{Span} \mathcal{S}^{\prime}
$$

2. Repeat step 1 with \mathcal{S} replaced by \mathcal{S}^{\prime}.

Since we cannot remove vectors from \mathcal{S} indefinitely, at some point we are guaranteed to have \mathcal{S}^{\prime} be linearly independent.

This proves the following important result.

Theorem 4

Let $\mathcal{S} \subseteq \mathbb{R}^{n}$ be a finite list of vectors. There is a subset $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ so that:

1. \mathcal{S}^{\prime} is linearly independent;
2. $\operatorname{Span} \mathcal{S}^{\prime}=\operatorname{Span} \mathcal{S}$.

Notice that if we apply our proof to the set $\mathcal{S}=\{\mathbf{0}\}$, in step 1 we must remove 0, so that

$$
\mathcal{S}^{\prime}=\varnothing .
$$

The set \varnothing is considered to be linearly independent, since the "for every" condition defining linear independence is "vacuously true."

So Theorem 4 holds in this case as well, provided we define

$$
\text { Span } \varnothing=\{\mathbf{0}\} .
$$

Now suppose we have a linearly independent set of vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$. Let $A=\left(\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{k}\end{array}\right)$.
Because the only solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$, we must have

$$
\text { Null } A=\{\mathbf{0}\} .
$$

Choose any $\mathbf{y} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Col} A$.
Then the equation $A \mathbf{x}=\mathbf{y}$ is consistent, by definition, and its solution set has the form

$$
\mathbf{x}_{0}+\operatorname{Null} A=\mathbf{x}_{0}+\{\mathbf{0}\}=\left\{\mathbf{x}_{0}\right\} .
$$

In other words, for every $\mathbf{y} \in \operatorname{Col} A$, the equation $A \mathbf{x}=\mathbf{y}$ has a unique solution.

Theorem 5

The columns of a matrix A are linearly independent if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for every $\mathbf{b} \in \operatorname{Col} A$.

This gives the connection between linear independence of vectors and uniqueness of solutions to linear systems.

Note that the condition $\mathbf{b} \in \operatorname{Col} A$ is just another way of saying that $A \mathbf{x}=\mathbf{b}$ is consistent.

Now let $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\} \subseteq \mathbb{R}^{n}$ be a linearly independent set of vectors.

$$
\text { Let } A=\left(\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{k}
\end{array}\right) .
$$

For any $y \in \operatorname{Span} \mathcal{S}=\operatorname{Col} A$, we now know that there is a unique $\mathbf{x} \in \mathbb{R}^{k}$ so that $A \mathbf{x}=\mathbf{y}$.

We call the vector \mathbf{x} the coordinate vector of \mathbf{y} relative to \mathcal{S} (or the vector of \mathcal{S}-coordinates), and write

$$
[\mathbf{y}]_{\mathcal{S}}=\mathbf{x}
$$

Equivalently,

$$
A[\mathbf{y}]_{\mathcal{S}}=\mathbf{y}
$$

Note that the computation of the \mathcal{S}-coordinates of \mathbf{y} amounts to solving the linear system with augmented matrix $\left(\begin{array}{ll}A & \mathbf{y}\end{array}\right)$.

Example 3

Show that the set of vectors

$$
\mathcal{S}=\left\{\left(\begin{array}{c}
0 \\
2 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{c}
-3 \\
1 \\
4 \\
-4
\end{array}\right),\left(\begin{array}{c}
9 \\
-7 \\
-5 \\
-2
\end{array}\right)\right\}
$$

are linearly independent and find the \mathcal{S}-coordinates of

$$
\mathbf{y}=\left(\begin{array}{c}
3 \\
1 \\
0 \\
-7
\end{array}\right)
$$

Solution. We can achieve both aims simultaneously by row reducing the augmented matrix:

$$
\left(\begin{array}{cccc}
0 & -3 & 9 & 3 \\
2 & 1 & -7 & 1 \\
-1 & 4 & -5 & 0 \\
1 & -4 & -2 & -7
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Because there are pivots in all of the first three columns, the set \mathcal{S} is linearly independent and

$$
[\mathbf{y}]_{\mathcal{S}}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)
$$

Remark

Given a linearly independent set $\mathcal{S} \subseteq \mathbb{R}^{n}$, the \mathcal{S}-coordinates of a vector $\mathbf{y} \in \operatorname{Span} \mathcal{S}$ depend on the ordering of the vectors in \mathcal{S}.

For instance, suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{2} \in R^{n}$ are linearly independent. Let

$$
\mathbf{y}=\mathbf{v}_{1}+2 \mathbf{v}_{2}+3 \mathbf{v}_{3}
$$

If we take $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, then

$$
[\mathbf{y}]_{\mathcal{S}}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

However, if we take $\mathcal{S}^{\prime}=\left\{\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{1}\right\}$, then

$$
[\mathbf{y}]_{\mathcal{S}^{\prime}}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right) \neq[\mathbf{y}]_{\mathcal{S}} .
$$

Moral. Any time we talk about the \mathcal{S}-coordinates of a vector, we will always assume that \mathcal{S} is an ordered list of vectors.

Properties of Coordinates

Let $\mathcal{S} \subseteq \mathbb{R}^{n}$ be a linearly independent (ordered) set of vectors with $|\mathcal{S}|=m \leq n$.
The \mathcal{S}-coordinate operation can be thought of as a function

$$
[\cdot]_{\mathcal{S}}: \operatorname{Span} \mathcal{S} \rightarrow \mathbb{R}^{m}
$$

This function has some very nice properties.

Theorem 6

Let everything be as above. For any $\mathbf{x}, \mathbf{y} \in \operatorname{Span} \mathcal{S}$ and any $c \in \mathbb{R}$:

1. $[\mathbf{x}+\mathbf{y}]_{\mathcal{S}}=[\mathbf{x}]_{\mathcal{S}}+[\mathbf{y}]_{\mathcal{S}}$
2. $[c \mathbf{x}]_{\mathcal{S}}=c[\mathbf{x}]_{\mathcal{S}}$

Furthermore, $[\cdot]_{\mathcal{S}}$ is one-to-one and onto.

Terminology

Given a function $f: X \rightarrow Y$ we say:

- X is the domain of f.
- Y is the codomain of f.
- $\operatorname{lm} f=\{f(x) \mid x \in X\}$ is the image or range of f.

Definition (One-to-one)

We say that a function $f: X$ is one-to-one if it never sends two distinct objects to the same place. That is:

$$
x \neq y \Rightarrow f(x) \neq f(y)
$$

Remark. Equations are usually more useful than inequalities. The (equivalent) contrapositive of this one-to-one condition is

$$
f(x)=f(y) \Rightarrow x=y
$$

and this is typically how one checks that f is one-to-one.

Definition (Onto)

We say that a function $f: X \rightarrow Y$ is onto if $\operatorname{Im} f=Y$. That is, for every $y \in Y$ the equation

$$
f(x)=y
$$

has a solution $x \in X$.

Proof of Theorem 6.

Theorem 6 now follows easily from the properties of the matrix-vector product.
Suppose $\mathcal{S} \subset \mathbb{R}^{n}$ is linearly independent.
Let A be the matrix whose columns are the members of \mathcal{S}.
Recall that $[\mathbf{x}]_{\mathcal{S}}$ is the unique vector in \mathbb{R}^{m} (where $m=|\mathcal{S}|$) so that

$$
A[\mathbf{x}]_{\mathcal{S}}=\mathbf{x}
$$

Thus

$$
A[\mathbf{x}+\mathbf{y}]_{\mathcal{S}}=\mathbf{x}+\mathbf{y}=A[\mathbf{x}]_{\mathcal{S}}+A[\mathbf{y}]_{\mathcal{S}}=A\left([\mathbf{x}]_{\mathcal{S}}+[\mathbf{y}]_{\mathcal{S}}\right) .
$$

Uniqueness of coordinate vectors implies that

$$
[\mathbf{x}+\mathbf{y}]_{\mathcal{S}}=[\mathbf{x}]_{\mathcal{S}}+[\mathbf{y}]_{\mathcal{S}} .
$$

Likewise,

$$
A[c \mathbf{x}]_{\mathcal{S}}=c \mathbf{x}=c\left(A[\mathbf{x}]_{\mathcal{S}}\right)=A\left(c[\mathbf{x}]_{\mathcal{S}}\right)
$$

and uniqueness of coordinates implies that

$$
[c \mathbf{x}]_{\mathcal{S}}=c[\mathbf{x}]_{\mathcal{S}}
$$

The \mathcal{S}-coordinate map is one-to-one because coordinates are unique.
The \mathcal{S}-coordinate map is onto, because given any $\mathbf{y} \in \mathbb{R}^{m}$, if we let

$$
\mathbf{x}=A \mathbf{y}
$$

then we have $A \mathbf{y}=\mathbf{x}=A[\mathbf{x}]_{\mathcal{S}}$, and uniqueness of coordinates implies that

$$
[\mathbf{x}]_{\mathcal{S}}=\mathbf{y}
$$

To demonstrate the final part of the proof, suppose we are given the linearly independent set

$$
\mathcal{S}=\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\} .
$$

To find a vector whose \mathcal{S}-coordinates are (1,2,3), we simply set

$$
\mathbf{x}=1\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+2\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+3\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
3 \\
6
\end{array}\right)
$$

Theorem 6 will be our main tool for studying linearly independent sets.

Our first application is:

Theorem 7

Let $\mathcal{S} \subseteq \mathbb{R}^{n}$ be a linearly independent (ordered) list of vectors with $|\mathcal{S}|=m \leq n$. Suppose $\mathcal{S}^{\prime} \subseteq \operatorname{Span} \mathcal{S}$. Then \mathcal{S}^{\prime} is linearly independent if and only if the corresponding set of coordinate vectors

$$
\left[\mathcal{S}^{\prime}\right]_{\mathcal{S}}=\left\{[\mathbf{v}]_{\mathcal{S}} \mid \mathbf{v} \in \mathcal{S}\right\} \subseteq \mathbb{R}^{m}
$$

is linearly independent.

Proof. Using the properties of \mathcal{S}-coordinates, we have

$$
\left[\sum_{\mathbf{v} \in \mathcal{S}^{\prime}} c_{\mathbf{v}} \mathbf{v}\right]_{\mathcal{S}}=\sum_{\mathbf{v} \in \mathcal{S}^{\prime}}\left[c_{\mathbf{v}} \mathbf{v}\right]_{\mathcal{S}}=\sum_{\mathbf{v} \in \mathcal{S}^{\prime}} c_{\mathbf{v}}[\mathbf{v}]_{\mathcal{S}} .
$$

So

$$
\begin{aligned}
\sum_{\mathbf{v} \in \mathcal{S}^{\prime}} c_{\mathbf{v}}[\mathbf{v}]_{\mathcal{S}}=\mathbf{0} & \Longleftrightarrow\left[\sum_{\mathbf{v} \in \mathcal{S}^{\prime}} c_{\mathbf{v}} \mathbf{v}\right]_{\mathcal{S}}=\mathbf{0} \\
& \Longleftrightarrow \sum_{\mathbf{v} \in \mathcal{S}^{\prime}} c_{\mathbf{v}} \mathbf{v}=\mathbf{0}
\end{aligned}
$$

since the only vector with zero coordinates is the zero vector.

This means that there is a linear dependence among the vectors in \mathcal{S}^{\prime} if and only if there is a linear dependence among the coordinate vectors $[\mathbf{v}]_{\mathcal{S}}, \mathbf{v} \in \mathcal{S}^{\prime}$.

This proves the theorem.

