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Recall

We defined matrix-vector multiplication by

Ax =
(
a1 a2 · · · an

)




x1
x2
.
.
.

xn


 = x1a1 + x2a2 + · · ·+ xnan.

This enables us to express the linear system with augmented
matrix

(
A b

)
as the matrix equation

Ax = b.

The existence of a solution to this system is equivalent to the
statement that b is a linear combination of the columns of A.
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That is, b belongs to the column space of A:

b ∈ Span{a1, a2, . . . , an} = ColA.

The notion of linear independence is to uniqueness of solutions of
linear systems as the notion of span is to existence.

Definition

Let S = {v1, v2, . . . , vk} ⊂ R
n. We say that the vectors in S are

linearly independent iff the only solution to

x1v1 + x2v2 + · · ·+ xkvk = 0

is x1 = x2 = · · · = xk = 0. Otherwise we say that the vectors in S

are linearly dependent.
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Equivalently, v1, v2, . . . , vk are linearly independent iff

x1v1 + x2v2 + · · ·+ xkvk = 0 ⇒ x1 = x2 = · · · = xk = 0.

Negating the definition of linear independence we find that
v1, v2, . . . , vk are linearly dependent iff the equation

x1v1 + x2v2 + · · ·+ xkvk = 0

has a nonzero solution x ∈ R
k .

Such a nonzero solution is called a dependence relation.
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Taking the vectors in the definition to be the columns of a matrix
A, we find that the columns of A are linearly independent iff the
only solution to Ax = 0 is x = 0.

This means that we cannot have any free variables (non-pivot
columns) when we row reduce the coefficient matrix A. That is, A
must have a pivot in each column.

Note that this also tells us that, when it is consistent, the
inhomogeneous equation

Ax = b

has exactly one solution for any b. We’ll come back to this fact.
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Example 1

Determine whether or not the vectors



1
2
3
4


 ,




5
6
7
8


 ,




9
10
11
12


 ∈ R

4

are linearly independent.

Solution. We put the vectors into a matrix and row reduce.



1 5 9
2 6 10
3 7 11
4 8 12




RREF
−−−→




1 0 −1
0 1 2
0 0 0
0 0 0




Since there is not a pivot in every column, the equation Ax = 0 has
more than one solution. So the vectors are linearly dependent.
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In fact, the nontrivial solutions to Ax = 0 are given by

x1 = x3,

x2 = −2x3,

x3 is free.

Any nonzero choice of x3 yields a dependence relation among the
given vectors.

Taking x3 = −2, for instance, we have

−2




1
2
3
4


+ 4




5
6
7
8


− 2




9
10
11
12


 = 0.
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Example 2

Determine whether or not the vectors



1
0
−1


 ,




, 1
−1
0


 ,



1
1
1


 ∈ R

3

are linearly independent.

Solution. We use the vectors as the columns of a matrix and row
reduce: 


1 1 1
0 −1 1
−1 0 1


 RREF

−−−→



1 0 0
0 1 0
0 0 1


 .

Since we have a pivot in every column, the vectors are linearly
independent.
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The following result and its corollary show that there is an upper
limit to how large a linearly independent subset of Rn can be.

Theorem 1

Let S = {v1, v2, . . . , vk} ⊆ R
n. If k > n, then S is linearly

dependent.

Proof. If k > n, then the n × k coefficient matrix
A =

(
v1 v2 · · · vk

)
is underdetermined.

By an earlier result, this means that the system Ax = 0 must have
infinitely many solutions (since it is necessarily consistent).

In particular, it has nonzero solutions, which means the vectors in
S are linearly dependent.
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Since every implication is logically equivalent to its contrapositive,
we immediately obtain:

Corollary 1

Let S = {v1, v2, . . . , vk} ⊆ R
n. If S is linearly independent, then

k ≤ n.

In words: the size of a linearly independent set of vectors cannot
exceed the number of entries in each vector.

Although we will primarily be interested in linearly independent
sets, let’s take a look at the property of linear dependence first.
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Notice that in the dependence relation

−2v1 + 4v2 + 3v3 = 0

we can solve for v1 in terms of v2 and v3:

v1 = −
1

2
(−4v2 − 3v3) = 2v2 +

3

2
v3 ∈ Span{v2, v3}.

That is, v1 is a linear combination of the remaining vectors v2 and
v3.

Remark. It is also true that v2 is a linear combination of v1 and
v3,and that v3 is a linear combination of v1 and v2, but this is not
always the case for linearly dependent sets of vectors.
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The most we can say in general is:

Theorem 2 (Characterization of Linearly Dependent Sets)

The vectors v1, v2, . . . , vk ∈ R
n are linearly dependent if and only

if (at least) one of the vectors is a linear combination of the others.
In fact, if v1 6= 0, then there is a j > 1 so that
vj ∈ Span{v1, v2, . . . , vj−1}.

Proof. Because this is an “if and only if” statement, we must show
that the two hypotheses imply each other.

Suppose that vj is a linear combination of the other vectors:

vj =
∑

i 6=j

civi .
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Then
vj −

∑

i 6=j

civi = 0

is a dependence relation among the vectors, since the coefficient of
vj is 1 6= 0. Thus the vectors are linearly dependent.

Now for the converse. Suppose that v1, v2, . . . , vk are linearly
dependent.

This means and that

x1v1 + x2v2 + · · ·+ xkvk = 0

has a nontrivial solution. Let xj be any nonzero weight.
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Then

xjvj = −
∑

i 6=j

xivi ⇒ vj =
∑

i 6=j

−xi
xj

vi

since xj 6= 0. This expresses vj as a linear combination of the other
vectors.

Now suppose we know that v1 6= 0. Let xj be the nonzero weight
with the largest subscript.

Then xj+1 = xj+2 = · · · = xk = 0.

If j = 1 this means

0 = x1v1 + x2v2 + · · · + xkvk = x1v1 ⇒ v1 = 0,

since x1 6= 0. But this contradicts our hypothesis.
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So j > 1 and

0 =
∑

1≤i≤k

xivi =
∑

i≤ j

xivi =
∑

i< j

xivi + xjvj .

As above, because xj 6= 0 we can solve this for vj :

vj =
∑

i<j

−xi
xj

vi ∈ Span{v1, v2, . . . , vj−1}.
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Let S = {v1, v2, . . . , vk} ⊆ R
n be a finite (ordered) list of vectors.

Since 0 is a linear combination of any given vectors (just use zero
weights), the theorem tells us that

0 ∈ S ⇒ S is linearly dependent.

In particular
{0} is linearly dependent.

If vj = vi for some i 6= j , then clearly vj is a linear combination of
the other vectors. Thus

vj = vi for some i 6= j ⇒ S is linearly dependent.
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Let v1, v2, . . . , vk ∈ R
n and suppose that vj is a linear combination

of the other vectors:
vj =

∑

i 6=j

civi .

Let
x =

∑

i

divi ∈ Span{v1, v2, . . . , vk}.

Then

x = djvj +
∑

i 6=j

divi = dj
∑

i 6=j

civi +
∑

i 6=j

divi

=
∑

i 6=j

(djci + di )vi ∈ Span{v1, v2, . . . , v̂j , . . . , vk},

where the “hat” indicates that vj is to be omitted from the list.
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This shows that every vector in Span{v1, v2, . . . , vk} lies in
Span{v1, v2, . . . , v̂j , . . . , vk}.

The reverse statement is also true, since every vector that is a
linear combination of v1, v2, . . . , v̂j , . . . , vk is necessarily a linear
combination of v1, v2, . . . , vk (just take the vj weight to be zero).

This proves:

Theorem 3

Let v1, v2, . . . , vk ∈ R
n. If vj is a linear combination of the other

vectors, then

Span{v1, v2, . . . , vk} = Span{v1, v2, . . . , v̂j , . . . , vk}.
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Example

Consider the reduced matrix

A =




1 −2 0 1 4 0 0 −3
0 0 1 −1 3 0 0 2
0 0 0 0 0 1 0 5
0 0 0 0 0 0 1 −6
0 0 0 0 0 0 0 0




=
(
a1 a2 a3 a4 a5 a6 a7 a8

)
.

Notice that the nonpivot columns are linear combinations of the
pivot columns to the left.

By Theorem 3, this means

ColA = Span{a1, a2, a3, a4, a5, a6, a7, a8} = Span{a1, a3, a6, a7}.
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We can use Theorem 3 to devise an algorithm for constructing
linearly independent spanning sets.

Let S = {v1, v2, . . . , vk} ⊆ R
n.

1. If S is linearly dependent, choose a vector v that is a linear
combination of the others. Let

S ′ = S \ {v}.

Note that Theorem 3 tells us that

SpanS = SpanS ′
.

2. Repeat step 1 with S replaced by S ′.

Since we cannot remove vectors from S indefinitely, at some point
we are guaranteed to have S ′ be linearly independent.
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This proves the following important result.

Theorem 4

Let S ⊆ R
n be a finite list of vectors. There is a subset S ′ ⊆ S so

that:

1. S’ is linearly independent;

2. SpanS ′ = SpanS.

Notice that if we apply our proof to the set S = {0}, in step 1 we
must remove 0, so that

S ′ = ∅.

The set ∅ is considered to be linearly independent, since the “for
every” condition defining linear independence is “vacuously true.”
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So Theorem 4 holds in this case as well, provided we define

Span∅ = {0}.

Now suppose we have a linearly independent set of vectors
v1, v2, . . . , vk ∈ R

n. Let A =
(
v1 v2 · · · vk

)
.

Because the only solution to Ax = 0 is x = 0, we must have

NullA = {0}.

Choose any y ∈ Span{v1, v2, . . . , vk} = ColA.
Then the equation Ax = y is consistent, by definition, and its
solution set has the form

x0 + NullA = x0 + {0} = {x0}.
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In other words, for every y ∈ ColA, the equation Ax = y has a
unique solution.

Theorem 5

The columns of a matrix A are linearly independent if and only if
the equation Ax = b has a unique solution for every b ∈ ColA.

This gives the connection between linear independence of vectors
and uniqueness of solutions to linear systems.

Note that the condition b ∈ ColA is just another way of saying
that Ax = b is consistent.
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Now let S = {v1, v2, . . . , vk} ⊆ R
n be a linearly independent set of

vectors.

Let A =
(
v1 v2 . . . vk

)
.

For any y ∈ SpanS = ColA, we now know that there is a unique
x ∈ R

k so that Ax = y.

We call the vector x the coordinate vector of y relative to S (or
the vector of S-coordinates), and write

[y]S = x.

Equivalently,
A[y]S = y.
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Note that the computation of the S-coordinates of y amounts to
solving the linear system with augmented matrix

(
A y

)
.

Example 3

Show that the set of vectors

S =








0
2
−1
1


 ,




−3
1
4
−4


 ,




9
−7
−5
−2








are linearly independent and find the S-coordinates of

y =




3
1
0
−7


 .
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Solution. We can achieve both aims simultaneously by row
reducing the augmented matrix:




0 −3 9 3
2 1 −7 1
−1 4 −5 0
1 −4 −2 −7




RREF
−−−→




1 0 0 3
0 1 0 2
0 0 1 1
0 0 0 0




Because there are pivots in all of the first three columns, the set S
is linearly independent and

[y]S =



3
2
1


 .
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Remark

Given a linearly independent set S ⊆ R
n, the S-coordinates of a

vector y ∈ SpanS depend on the ordering of the vectors in S.

For instance, suppose v1, v2, v2 ∈ Rn are linearly independent. Let

y = v1 + 2v2 + 3v3.

If we take S = {v1, v2, v3}, then

[y]S =



1
2
3


 .
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However, if we take S ′ = {v2, v3, v1}, then

[y]S′ =



2
3
1


 6= [y]S .

Moral. Any time we talk about the S-coordinates of a vector, we
will always assume that S is an ordered list of vectors.
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Properties of Coordinates

Let S ⊆ R
n be a linearly independent (ordered) set of vectors with

|S| = m ≤ n.

The S-coordinate operation can be thought of as a function

[·]S : SpanS → R
m
.

This function has some very nice properties.

Theorem 6

Let everything be as above. For any x, y ∈ SpanS and any c ∈ R:

1. [x+ y]S = [x]S + [y]S

2. [cx]S = c[x]S

Furthermore, [·]S is one-to-one and onto.

Daileda Linear Independence



Terminology

Given a function f : X → Y we say:

X is the domain of f .

Y is the codomain of f .

Im f = {f (x) | x ∈ X} is the image or range of f .

Definition (One-to-one)

We say that a function f : X is one-to-one if it never sends two
distinct objects to the same place. That is:

x 6= y ⇒ f (x) 6= f (y).
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Remark. Equations are usually more useful than inequalities. The
(equivalent) contrapositive of this one-to-one condition is

f (x) = f (y) ⇒ x = y ,

and this is typically how one checks that f is one-to-one.

Definition (Onto)

We say that a function f : X → Y is onto if Im f = Y . That is, for
every y ∈ Y the equation

f (x) = y

has a solution x ∈ X .
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Proof of Theorem 6.

Theorem 6 now follows easily from the properties of the
matrix-vector product.

Suppose S ⊂ R
n is linearly independent.

Let A be the matrix whose columns are the members of S.

Recall that [x]S is the unique vector in R
m (where m = |S|) so that

A[x]S = x

Thus

A[x+ y]S = x+ y = A[x]S + A[y]S = A ([x]S + [y]S) .

Uniqueness of coordinate vectors implies that

[x+ y]S = [x]S + [y]S .
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Likewise,
A[cx]S = cx = c(A[x]S) = A(c[x]S),

and uniqueness of coordinates implies that

[cx]S = c[x]S .

The S-coordinate map is one-to-one because coordinates are
unique.

The S-coordinate map is onto, because given any y ∈ R
m, if we let

x = Ay

then we have Ay = x = A[x]S , and uniqueness of coordinates
implies that

[x]S = y.
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To demonstrate the final part of the proof, suppose we are given
the linearly independent set

S =







1
0
1


 ,



−1
0
1


 ,



0
1
1





 .

To find a vector whose S-coordinates are (1, 2, 3), we simply set

x = 1



1
0
1


+ 2



−1
0
1


+ 3



0
1
1


 =



−1
3
6


 .

Theorem 6 will be our main tool for studying linearly independent
sets.
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Our first application is:

Theorem 7

Let S ⊆ R
n be a linearly independent (ordered) list of vectors with

|S| = m ≤ n. Suppose S ′ ⊆ SpanS. Then S ′ is linearly
independent if and only if the corresponding set of coordinate
vectors

[S ′]S = {[v]S |v ∈ S} ⊆ R
m

is linearly independent.

Proof. Using the properties of S-coordinates, we have

[
∑

v∈S′

cvv

]

S

=
∑

v∈S′

[cvv]S =
∑

v∈S′

cv[v]S .

Daileda Linear Independence



So
∑

v∈S′

cv[v]S = 0 ⇐⇒

[
∑

v∈S′

cvv

]

S

= 0

⇐⇒
∑

v∈S′

cvv = 0,

since the only vector with zero coordinates is the zero vector.

This means that there is a linear dependence among the vectors in
S ′ if and only if there is a linear dependence among the coordinate
vectors [v]S , v ∈ S ′.

This proves the theorem.
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