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Recall

We defined matrix-vector multiplication by
X1
X2
Ax= (a; ax -+ a,) | . | =xa1+x8+ "+ xpan.
Xn
This enables us to express the linear system with augmented

matrix (A b) as the matrix equation

Ax = b.

The existence of a solution to this system is equivalent to the
statement that b is a linear combination of the columns of A.
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That is, b belongs to the column space of A:

b € Span{a;,az,...,a,} = Col A

The notion of /inear independence is to uniqueness of solutions of
linear systems as the notion of span is to existence.

Definition
Let S = {v1,va,...,vk} C R". We say that the vectors in S are
linearly independent iff the only solution to

xiV1 +xovo + - -+ xev =0

is x;1 = xp = --- = x, = 0. Otherwise we say that the vectors in S
are linearly dependent.
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Equivalently, vi,vs, ... v, are linearly independent iff

‘X1V1+X2V2—|—"'—|—kak:0 = X1:X2:---:Xk20.‘

Negating the definition of linear independence we find that
V1,V2,..., Vi are linearly dependent iff the equation

xiV1 +xov2 + -+ xev =0

has a nonzero solution x € Rk,

Such a nonzero solution is called a dependence relation.
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Taking the vectors in the definition to be the columns of a matrix
A, we find that the columns of A are linearly independent iff the
only solution to Ax =0 is x = 0.

This means that we cannot have any free variables (non-pivot
columns) when we row reduce the coefficient matrix A. That is, A
must have a pivot in each column.

Note that this also tells us that, when it is consistent, the
inhomogeneous equation
Ax=Db

has exactly one solution for any b. We'll come back to this fact.
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Example 1

Determine whether or not the vectors

1\ /5 9
2| 6] |10 .
s |7 |1] €R
4) \s) \12

are linearly independent.

Solution. We put the vectors into a matrix and row reduce.

1 5 9 1 0 -1
2 6 10 RREF, 01 2
3 7 11 0 0 O
4 8 12 0 0 O

Since there is not a pivot in every column, the equation Ax = 0 has
more than one solution. So the vectors are linearly dependent. [
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In fact, the nontrivial solutions to Ax = 0 are given by

X1 = X3,
xp = —2x3,
X3 is free.

Any nonzero choice of x3 yields a dependence relation among the
given vectors.

Taking x3 = —2, for instance, we have
1 5 9
2 6 10
-2 3 + 4 7 2 1| = 0.
4 8 12
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Example 2

Determine whether or not the vectors

1 .1 1
0 |,[{-1],([1]eRr®
=il 0 1

are linearly independent.

Solution. We use the vectors as the columns of a matrix and row

reduce:
1 1 1 100
0 -1 1] B 1o 1 0
1 0 1 00 1

Since we have a pivot in every column, the vectors are linearly
independent. [l
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The following result and its corollary show that there is an upper
limit to how large a linearly independent subset of R” can be.

Let S = {vi,va,...,vx} CR". If k > n, then S is linearly
dependent.

Proof. If k > n, then the n x k coefficient matrix
A= (v1 vy - vk) is underdetermined.

By an earlier result, this means that the system Ax = 0 must have
infinitely many solutions (since it is necessarily consistent).

In particular, it has nonzero solutions, which means the vectors in

S are linearly dependent.
O

Daileda Linear Independence



Since every implication is logically equivalent to its contrapositive,
we immediately obtain:

Let S = {vi,va,...,vx} CR". IfS is linearly independent, then
k < n.

In words: the size of a linearly independent set of vectors cannot
exceed the number of entries in each vector.

Although we will primarily be interested in linearly independent
sets, let's take a look at the property of linear dependence first.
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Notice that in the dependence relation
—2vy +4vy +3v3 =0

we can solve for vy in terms of v, and vs:

1 3
V] = —5(—4V2 — 3V3) =2vy + §V3 S Span{v2,V3}.

That is, v; is a linear combination of the remaining vectors v, and
V3.

Remark. It is also true that v, is a linear combination of v; and

v3,and that v3 is a linear combination of v; and v,, but this is not
always the case for linearly dependent sets of vectors.
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The most we can say in general is:

Theorem 2 (Characterization of Linearly Dependent Sets)

The vectors vi,Va, ... v € R" are linearly dependent if and only
if (at least) one of the vectors is a linear combination of the others.
In fact, if vi # 0, then there is a j > 1 so that

Vj € Span{vl,vz, R ,Vj_l}.

Proof. Because this is an “if and only if” statement, we must show
that the two hypotheses imply each other.
Suppose that v; is a linear combination of the other vectors:

Vj = E CiV;.

i#j
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Then

Vj — Z CiVi = 0
i#j
is a dependence relation among the vectors, since the coefficient of
vj is 1 # 0. Thus the vectors are linearly dependent.

Now for the converse. Suppose that vi, vy, ..., v, are linearly
dependent.

This means and that
X1V1 +xoVo + -+ xv =0

has a nontrivial solution. Let x; be any nonzero weight.
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Then
XjVj:—EX,'V,':>Vj:E X'Vi
i#i i#
since x; # 0. This expresses v; as a linear combination of the other
vectors.

Now suppose we know that vi # 0. Let x; be the nonzero weight
with the largest subscript.

If j =1 this means
0=xvi + XV + -+ XV = x3v1 = v =0,

since x; # 0. But this contradicts our hypothesis.
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Soj > 1 and

0= E XiV; = E XiV; = E XiVi + XjVj.

1<i<k i<j i<j

As above, because x; # 0 we can solve this for v;:

—X;
vj = E 7V,‘ S Span{vl,vz, R ,Vj_l}.
i<j
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Let S = {vi,v2,...,vk} C R" be a finite (ordered) list of vectors.

Since 0 is a linear combination of any given vectors (just use zero
weights), the theorem tells us that

‘0 €S = S§is linearly dependent. ‘

In particular
{0} is linearly dependent.

If vj = v; for some i # j, then clearly v; is a linear combination of
the other vectors. Thus

‘vj =v; for some i #j = & is linearly dependent.‘
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Let vi,vo,...,vix € R" and suppose that v; is a linear combination
of the other vectors:
Vj = Z CiV;.
i#j

Let
X = Zd;v,- € Span{vi,va,...,Vk}.

1

Then
X = djVj—l-Zd,'V,' = deC,'V,'-i-Zd,'V,'
i#j i#j i#j
= Z(djc; + di)vi € Span{vy,vo,...,Vj, ..., vk},
i#j
where the "hat” indicates that v; is to be omitted from the list.
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This shows that every vector in Span{vi,va,..., vk} lies in
Span{vi,vo,...,Vj, ..., vk}

The reverse statement is also true, since every vector that is a

linear combination of v1,vo,...,Vj,..., Vv is necessarily a linear
combination of vi, v, ..., v, (just take the v; weight to be zero).
This proves:

Let vi,vo,...,vix € R". Ifvj is a linear combination of the other
vectors, then

Span{vi,va,..., vk} = Span{vi,va,...,Vj, ... v}
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Example

Consider the reduced matrix

1 -20 1 400 -3
0 0 1 -1 3 00 2
A=10 0 0 O 01 0 5
0 0 0 0 001 -6
0 0 0 0 00O O

:(a1 d> 4d3 44 as 4ag ary ag).

Notice that the nonpivot columns are linear combinations of the
pivot columns to the left.

By Theorem 3, this means

Col A= Span{a17a27a37a47a57a67a77a8} = Span{a17a37a67a7}'
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We can use Theorem 3 to devise an algorithm for constructing
linearly independent spanning sets.

Let S = {vi,voa,...,vx} CR".

1. If S is linearly dependent, choose a vector v that is a linear
combination of the others. Let

=8 \ {v}.
Note that Theorem 3 tells us that

SpanS = Span §'.

2. Repeat step 1 with S replaced by S'.

Since we cannot remove vectors from S indefinitely, at some point
we are guaranteed to have S’ be linearly independent.
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This proves the following important result.

Theorem 4

Let S C R" be a finite list of vectors. There is a subset S’ C S so
that:

1. S’ is linearly independent;
2. SpanS’ = Span S.

Notice that if we apply our proof to the set S = {0}, in step 1 we
must remove 0, so that
§'=wo.

The set @ is considered to be linearly independent, since the “for
every” condition defining linear independence is “vacuously true.”
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So Theorem 4 holds in this case as well, provided we define

Span@ = {0}.

Now suppose we have a linearly independent set of vectors
Vi,Vo,...,Vx € R" Let A= (v1 vy - vk).
Because the only solution to Ax = 0 is x = 0, we must have

Null A = {0}.
Choose any y € Span{vy,va,...,vg} = Col A.

Then the equation Ax =y is consistent, by definition, and its
solution set has the form

xo + Null A =xo + {0} = {Xo}.
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In other words, for every y € Col A, the equation Ax =y has a
unique solution.

The columns of a matrix A are linearly independent if and only if
the equation Ax = b has a unique solution for every b € Col A.

This gives the connection between linear independence of vectors
and uniqueness of solutions to linear systems.

Note that the condition b € Col A is just another way of saying
that Ax = b is consistent.
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Now let S = {v1,va,...,vk} C R" be a linearly independent set of
vectors.

LetA:(v1 Vo oL vk).

For any y € SpanS = Col A, we now know that there is a unique
x € R¥ so that Ax =y.

We call the vector x the coordinate vector of y relative to S (or
the vector of S-coordinates), and write

[yls = x.

Equivalently,
Alyls =y.
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Note that the computation of the S-coordinates of y amounts to
solving the linear system with augmented matrix (A y).

Example 3

Show that the set of vectors

0 9 9
2 1 —7
S=0 (=1l | 4] ]|-s
1 —4) \-2

are linearly independent and find the S-coordinates of

3
BE
Y=1 o

—7

ot
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Solution. We can achieve both aims simultaneously by row
reducing the augmented matrix:

0 -3 9 3 100 3
2 1 -7 1 RREF |0 1 0 2
1 4 -5 ol "loo11
1 -4 —2 —7 000 0

Because there are pivots in all of the first three columns, the set S
is linearly independent and

lyls =

= N W

O
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Remark

Given a linearly independent set S C R”, the S-coordinates of a
vector y € Span S depend on the ordering of the vectors in S.

For instance, suppose vi,vs,vs € R" are linearly independent. Let

y = vi + 2vy + 3vs.

If we take S = {v1,v2,v3}, then

1
lyls = |2
3
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However, if we take &’ = {vy,v3,v1}, then

2

[vls: = | 3] #yls-
1

Moral. Any time we talk about the S-coordinates of a vector, we
will always assume that S is an ordered list of vectors.
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Properties of Coordinates

Let S C R” be a linearly independent (ordered) set of vectors with
|S| =m < n.

The S-coordinate operation can be thought of as a function

[]s : SpanS — R™.

This function has some very nice properties.

Theorem 6

Let everything be as above. For any x,y € Span S and any ¢ € R:
L [x+yls = [x]s + [yls
2. [ex]s = c[x]s

Furthermore, [-]s is one-to-one and onto.
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Terminology

Given a function f : X — Y we say:
@ X is the domain of f.
@ Y is the codomain of f.

o Imf = {f(x)|x € X} is the image or range of f.

Definition (One-to-one)

We say that a function f : X is one-to-one if it never sends two
distinct objects to the same place. That is:

x#y = fx)#f(y)
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Remark. Equations are usually more useful than inequalities. The
(equivalent) contrapositive of this one-to-one condition is

f(x)=fly) = x=y,

and this is typically how one checks that f is one-to-one.

Definition (Onto)
We say that a function f : X — Y is onto if Imf = Y. That is, for
every y € Y the equation

f(x)=y

has a solution x € X.
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Proof of Theorem 6.

Theorem 6 now follows easily from the properties of the
matrix-vector product.

Suppose § C R” is linearly independent.
Let A be the matrix whose columns are the members of S.
Recall that [x]s is the unique vector in R™ (where m = |S]) so that

Alx]s = x
Thus
Alx+yls =x+y = Alx]s + Alyls = A([x]s + [yls) -
Uniqueness of coordinate vectors implies that
[x+yls = [x]s + [yls-
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Likewise,
Alex]s = ex = c(A[x]s) = A(c[x]s),

and uniqueness of coordinates implies that

[ex]s = c[x]s.

The S-coordinate map is one-to-one because coordinates are
unique.
The S-coordinate map is onto, because given any y € R™, if we let

x = Ay

then we have Ay = x = A[x]s, and uniqueness of coordinates
implies that

[xls =y.
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To demonstrate the final part of the proof, suppose we are given
the linearly independent set

1 -1 0
s={lo], (0], [1
1 1 1

To find a vector whose S-coordinates are (1,2, 3), we simply set

1 -1 0 -1
x=1(0])+2( 0 |+3|1] =13
1 1 1 6

Theorem 6 will be our main tool for studying linearly independent
sets.
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Our first application is:

Theorem 7

Let S C R" be a linearly independent (ordered) list of vectors with
|S| = m < n. Suppose S’ C SpanS. Then S’ is linearly
independent if and only if the corresponding set of coordinate
vectors

[S']s = {lv]s[ve S} CR™

is linearly independent.

Proof. Using the properties of S-coordinates, we have

[Z cvv] = Z [av]s = Z alv]s.
S

veS’ ves’ ves’

Daileda Linear Independence



So
ch[v]gzﬂ = Zc\,v =0
ves’ ves’ S
<— Z av =0,
ves’

since the only vector with zero coordinates is the zero vector.

This means that there is a linear dependence among the vectors in
S’ if and only if there is a linear dependence among the coordinate
vectors [v]s, v € §'.

This proves the theorem. U
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