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Introduction

To unify our work with spans and linear independence, we
introduce the notion of subspace.

We will see that every span is a subspace and that every subspace
is a span.

A minimal spanning set for a subspace is a basis.

The size of a basis turns out to be an important invariant of a
subspace known as its dimension.
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Subspaces

A subset H C R" is called a subspace if:
e 0 H;

o ifu,ve H, thenu+v e H,;

@ ifve Hand c € R, then cv € H.

In this case we write H < R".

Examples.

@ H={0} and H = R" are both subspaces of R".
@ For any finite S C R”, SpanS < R” by an earlier result.

o If Aisan m x n matrix, then Col A <R™ and Null A < R",
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Nullspaces are Subspaces

The final statement requires proof. Since A0 = 0, we have
0 € Null A.

Suppose x,y € Null A and ¢ € R. Then
Alx+y)=Ax+Ay=0+0=0,
so x+y € Null A, too.

We also have
A(cx) = ¢(Ax) = c0 =0,

which means cx € Null A.

These three facts show that Null A is a subspace of R".
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Spans are the prototypical examples of subspaces. In fact, they are
the only examples.

We will say that a subspace H < R" is finitely generated if
H = Span{vi,va,... v}

for some vectors vi,va,..., v, € R” (which must necessarily
belong to H).

We claim that every subspace H < R" is finitely generated.

Suppose this is not the case. Then for any finite linearly
independent set
S:{vl,...,vk} CH

we must have SpanS C H (because H is a subspace) but
SpanS # H.
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So we can choose v, 1 € H that is not in Span S.

Since vi11 € SpanS and S is linearly independent, then so is
S =SU{vii1} ={v1,...,Vk,Vki1} (there's no way any vector
can be a linear combination of those preceding it).

This means that if we start with S = &, say, we can build linearly
independent subsets of H with as many vectors as we like.

But H < R”, and in R" linearly independent subsets can have no
more than n vectors.

So H cannot fail to be finitely generated.
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This proves:

Let H < R". Then H is finitely generated. That is,

H = Span{vy, ..., vk}

for some v1,...,v, € R".

That is, the only subspaces of R" are the spans!

Recall that by removing vectors from a spanning set that are linear
combinations of the others, we can always arrive at a spanning set
that is linearly independent.
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So we immediately obtain the following corollary:

Let H<R". Then

H = Span{vi,...,vm}

for some linearly independent vy, ... ,v,, € R”, m < n.

This leads to the following definition.

Definition

Let H < R". We say that B C R" is a basis for H provided:
1. B is linearly independent.
2. H = SpanB.
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The corollary to Theorem 1 can now be rephrased as follows: every
subspace of R” has a basis with at most n vectors.

Find a basis for Null A, where

3 2 1 -5
A=[-9 -4 1 7
9 2 -5 1

Solution. We have

10 -1 1
ARREF 1o 1 2 —4
00 0 0
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Therefore the solutions to Ax = 0 are given by

X1 X3 — X4 1 -1
X — X2 _ —2X3 + 4-X4 — X3 -2 +x 4

X3 X3 1 0

X4 X4 0 1

with x3 and x4 free. Thus
1 -1
Null A = Span

Since the vectors on the RHS are not multiples of one another,
they are linearly independent. Thus B is a basis for Null A. ]
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Completing a Linearly Independent Set

Let H < R". Starting with a spanning set for H, we can remove
appropriate vectors to obtain a basis for H.

On the other hand, suppose we start with a linearly independent
set S C H.

Then SpanS C H (since H is closed under vector addition and
scalar multiplication).

If SpanS # H, we can choose a vector v € H that does not belong
to Span S.
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Then the set 8’ = SU{v} must be linearly independent as well (no
vector is a linear combo. of those preceding it), and SpanS’ C H.

Now replace S with S’ and repeat.

Because |S| < n, this process cannot go on forever. That is,
eventually we will have Span § = H with § linearly independent.

Let H < R".

1. If SpanS = H, then S contains a basis for H.

2. If § C H is linearly independent, then H has a basis
containing S.
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Remarks

Let H < R". Theorem 2 states that:

@ Every spanning set (of H) contains a basis (for H).

@ Every linearly independent set (in H) can be completed to a
basis (for H).

These two (complementary) facts can be extremely useful!
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Dimension

Every subspace of R” has a basis. As we will now see, the number
of vectors in a basis is invariant.

Let H < R" and let B be a basis for H with |B| = m < n.
Suppose § C H is a linearly independent subset of H.
Then we know that

[S]s € R™
is a linearly independent subset of R™.
This means that |S| = |[S]s| < m. Thus:

Let H < R". If H has a basis of size m, and S C H is linearly
independent, then

|S| < m.
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Suppose that H < R” has a basis B with |B| < n.

Suppose C C H is another basis for H. Note that C cannot contain
more than n vectors.

Because B is a basis and C is linearly independent, Theorem 3 tells
us that

IC] < |B].

Likewise, since C is a basis and B is linearly independent, we must
have

1B < [C].

That is, |B| = |C|.
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Theorem 4

Let H < R". Then H has a finite basis, and all bases of H have
the same size m < n.

The number m in the theorem is called the dimension of H:

dim H = # of vectors in every basis of H.

Compute dim Null A where

3 2 1 -5
A=|[-9 -4 1 7
9 2 -5 1
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Solution. We saw in Example 1 that Null A has a basis with two
vectors. Thus

[dim NullA=2]

O
Compute dimR".

Solution. If x € R", notice that

X1 1 0 0
X2 0 1 :
x=1| .| =x1|.|+tx]|. |+ +X 0
Xn 0 0 1
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Let

ej:((sij): 1],

0
which has a 1 in the jth entry and zeros elsewhere. Then
X = xie1 + - -+ + x,e, € Span{ey, ..., ey}

That is,
R" = Span{ey,...,en}.
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Since the matrix A = (e1 e - e,,) is in reduced echelon
form and has a pivot in every column, we conclude that
B = {ei1,...,en} is linearly independent.

Hence B is a basis for R”, so that

dimR" = |B| = n.

Remark. The basis
B={e1,...,en}

is called the standard basis for R".
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Dimensions of Column and Null Spaces

Given an matrix A, we will be particularly interested in computing

rank A = dimCol A and dim Null A.

To do this, we need to find bases for the subspaces Col A and
Null A.

Since Col A is the span of the columns of A, we know that by
discarding certain columns we will be left with a basis.

But which columns do we discard?
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This can be determined through row reduction!

Let U be the reduced echelon form of A. Then the equations
Ux=0 and Ax=0

have exactly the same solutions.

This tells us two things:

@ Null A= NullU.

@ The columns of U and the columns of A have the same
dependence relations.
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The pivot columns of U are clearly linearly independent, and every
non-pivot column is a linear combination of the pivot columns to
its left.

This means the same is true of the columns of A. So if we discard
the non-pivot columns of A we will be left with a basis for Col A.

Let A be an m x n matrix. The pivot columns of A form a basis
for Col A. Thus:

rank A = dim Col A = # pivot columns of A.

Remark. Because Col A < R™, we must have rank A < m.
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Example

Let's illustrate with an example. We have

1 3 2 -6 -6 1 300 2

A 39 1 5 10 RREF, 0010 -1 y
2 6 -1 9 14 0001 1
5 15 0 14 24 0 00O O

The second column of U is a linear combination (multiple) of the
first, and the final column of U is a linear combination of the first,
third and fourth.

And the pivot columns of U are clearly linearly independent.

So the same statements are true of the columns of A.
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So to get a basis for Col A we can take the first, third and fourth
columns of A:

1 2 —6
3 1 5
B= 217 | -1)]° 9
5 0 14

Remark. We must use the pivot columns of A, not those of its
reduced echelon form, to get a basis for Col A.
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What about the null space of A?
Any nonzero row of U has the form

(0 0 -+ 0 1 ¢pg1 -~ Cn),
where the 1 is in the ith column.

In the (reduced) equation Ux = 0, this corresponds to an equation
of the form

Xi+ Cip1Xig1+ - Cxn =0 & Xj = —Cit1Xi41 — ** — CnXp-

This means that every basic variable x; can be expressed in terms
of the free variables x; with j > i.
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So when we write
X1

X2
X =

Xn

parametrically, the free variable x; can only occur in the entries for
which i < j. That is, x; can only occur among the first j entries.

Hence
*
*
X = Z xj | 1| < jth position.
J 0
><J-|sfree
0
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Let

< jth position.

<
|
—

Because the x; are free, we conclude that

Null A = Span{v; | x; is free}.
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Because v; has a nonzero jth entry, but no earlier v; does, v,
cannot be a linear combination of the v; preceding it.

This means the set of v; is linearly independent! So we have a
basis for Null A.

Theorem 6

Let A be an m x n matrix. Then dim Null A is the number of free
variables in Ax = 0. Equivalently,

dim Null A = # of non-pivot columns of A.
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Example

Let's return to the matrix

1 3 2 -6 -6 1 300 2
A 39 1 5 10] rer |0 0 1 0 1| U
2 6 -1 9 14 0001 1]
5 15 0 14 24 0 00O O
It has two non-pivot columns, and therefore
dim Null A = 2.
The solutions to Ax = 0 are given by
X1 —3X2 - 2X5 -3 -2
X2 X2 1 0
X= | Xx3| = X5 = X2 0 + X5 1
X4 —X5 0 -1
X5 X5 0 1
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So a basis for Null A is

-3 2
1 0

B= of, |1
0 -1
0 1

We now make a trivial, but fundamental, observation. If A is
m X n, then

n = # cols. of A
= (# pivot cols. of A) + (# non-pivot cols. of A)
= rank A + dim Null A.

This is known as the rank theorem.
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The Rank Theorem

Theorem 7 (The Rank Theorem)

If A is an m X n matrix, then

n = rank A + dim Null A.

Example 4

Let A be a 5 x 7 matrix. Suppose the equation Ax = 0 has 3
linearly independent solutions. How many linearly independent
columns can A have?

Solution. The hypothesis implies that

3 < dim Null A.
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The Rank Theorem then tells us that

7 = rank A+ dim Null A > rank A + 3.

Hence
rank A<7 -3 =4,

So A can have no more than 4 linearly independent columns.
O

Remark. In general, the Rank Theorem shows that a lower bound
for dim Null A yields an upper bound for rank A, and vice versa.
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The Basis Theorem

Let H < R" with dim H = m < n, and suppose
S={vi,...,vm} CH.

If SpanS = H, then we can remove vectors from S (if necessary)
to obtain a basis for H.

But every basis for H has exactly m vectors, so S must already be
a basis.

Likewise, if S is linearly independent, we can add vectors to S (if
necessary) to obtain a basis for H.

The same reasoning shows that S is a basis for H.
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Thus:

Theorem 8 (The Basis Theorem)

Let H < R" and suppose S C H.
1. If|S| =dim H and SpanS = H, then S is a basis for H.

2. If|S| =dimH and S is linearly independent, then S is a basis
for H.

Remark. This result tells us that if S € H < R" contains the
“right number” of vectors, then we only have to check “half” of
the definition to show that S is a basis for H.

Daileda Linear Independence



Let H < R". Show that if dim H = n, then H = R".

Solution. Let B be a basis for H.
Then |B| =dimH = n.

Since B is linearly independent and |B| = n = dimR", the Basis
Theorem tells us that B is a basis for R".

Thus
H = SpanB =R".

O
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