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Introduction

To unify our work with spans and linear independence, we
introduce the notion of subspace.

We will see that every span is a subspace and that every subspace
is a span.

A minimal spanning set for a subspace is a basis.

The size of a basis turns out to be an important invariant of a
subspace known as its dimension.
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Subspaces

Definition

A subset H ⊆ R
n is called a subspace if:

0 ∈ H;

if u, v ∈ H, then u+ v ∈ H;

if v ∈ H and c ∈ R, then cv ∈ H.

In this case we write H ≤ R
n.

Examples.

H = {0} and H = R
n are both subspaces of Rn.

For any finite S ⊆ R
n, SpanS ≤ R

n by an earlier result.

If A is an m × n matrix, then ColA ≤ R
m and NullA ≤ R

n.
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Nullspaces are Subspaces

The final statement requires proof. Since A0 = 0, we have
0 ∈ NullA.

Suppose x, y ∈ NullA and c ∈ R. Then

A(x+ y) = Ax+ Ay = 0+ 0 = 0,

so x+ y ∈ NullA, too.

We also have
A(cx) = c(Ax) = c0 = 0,

which means cx ∈ NullA.

These three facts show that NullA is a subspace of Rn.
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Spans are the prototypical examples of subspaces. In fact, they are
the only examples.

We will say that a subspace H ≤ R
n is finitely generated if

H = Span{v1, v2, . . . , vk}

for some vectors v1, v2, . . . , vk ∈ R
n (which must necessarily

belong to H).

We claim that every subspace H ≤ R
n is finitely generated.

Suppose this is not the case. Then for any finite linearly
independent set

S = {v1, . . . , vk} ⊆ H

we must have SpanS ⊆ H (because H is a subspace) but
SpanS 6= H.
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So we can choose vk+1 ∈ H that is not in SpanS.

Since vk+1 6∈ SpanS and S is linearly independent, then so is
S ′ = S ∪ {vk+1} = {v1, . . . , vk , vk+1} (there’s no way any vector
can be a linear combination of those preceding it).

This means that if we start with S = ∅, say, we can build linearly
independent subsets of H with as many vectors as we like.

But H ≤ R
n, and in R

n linearly independent subsets can have no
more than n vectors.

So H cannot fail to be finitely generated.
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This proves:

Theorem 1

Let H ≤ R
n. Then H is finitely generated. That is,

H = Span{v1, . . . , vk}

for some v1, . . . , vk ∈ R
n.

That is, the only subspaces of Rn are the spans!

Recall that by removing vectors from a spanning set that are linear
combinations of the others, we can always arrive at a spanning set
that is linearly independent.
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So we immediately obtain the following corollary:

Corollary 1

Let H ≤ R
n. Then

H = Span{v1, . . . , vm}

for some linearly independent v1, . . . , vm ∈ R
n, m ≤ n.

This leads to the following definition.

Definition

Let H ≤ R
n. We say that B ⊆ R

n is a basis for H provided:

1. B is linearly independent.

2. H = SpanB.

Daileda Linear Independence



The corollary to Theorem 1 can now be rephrased as follows: every
subspace of Rn has a basis with at most n vectors.

Example 1

Find a basis for NullA, where

A =





3 2 1 −5
−9 −4 1 7
9 2 −5 1



 .

Solution. We have

A
RREF
−−−→





1 0 −1 1
0 1 2 −4
0 0 0 0



 .
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Therefore the solutions to Ax = 0 are given by

x =







x1
x2
x3
x4







=







x3 − x4
−2x3 + 4x4

x3
x4







= x3







1
−2
1
0







+ x4







−1
4
0
1







with x3 and x4 free. Thus

NullA = Span













1
−2
1
0







,







−1
4
0
1













︸ ︷︷ ︸

B

.

Since the vectors on the RHS are not multiples of one another,
they are linearly independent. Thus B is a basis for NullA.
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Completing a Linearly Independent Set

Let H ≤ R
n. Starting with a spanning set for H, we can remove

appropriate vectors to obtain a basis for H.

On the other hand, suppose we start with a linearly independent
set S ⊆ H.

Then SpanS ⊆ H (since H is closed under vector addition and
scalar multiplication).

If SpanS 6= H, we can choose a vector v ∈ H that does not belong
to SpanS.
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Then the set S ′ = S ∪{v} must be linearly independent as well (no
vector is a linear combo. of those preceding it), and SpanS ′ ⊆ H.

Now replace S with S ′ and repeat.

Because |S| ≤ n, this process cannot go on forever. That is,
eventually we will have SpanS = H with S linearly independent.

Theorem 2

Let H ≤ R
n.

1. If SpanS = H, then S contains a basis for H.

2. If S ⊆ H is linearly independent, then H has a basis

containing S.
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Remarks

Let H ≤ R
n. Theorem 2 states that:

Every spanning set (of H) contains a basis (for H).

Every linearly independent set (in H) can be completed to a
basis (for H).

These two (complementary) facts can be extremely useful!
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Dimension

Every subspace of Rn has a basis. As we will now see, the number
of vectors in a basis is invariant.

Let H ≤ R
n and let B be a basis for H with |B| = m ≤ n.

Suppose S ⊆ H is a linearly independent subset of H.

Then we know that
[S]B ⊆ R

m

is a linearly independent subset of Rm.

This means that |S| = |[S]B| ≤ m. Thus:

Theorem 3

Let H ≤ R
n. If H has a basis of size m, and S ⊆ H is linearly

independent, then

|S| ≤ m.
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Suppose that H ≤ R
n has a basis B with |B| ≤ n.

Suppose C ⊆ H is another basis for H. Note that C cannot contain
more than n vectors.

Because B is a basis and C is linearly independent, Theorem 3 tells
us that

|C| ≤ |B|.

Likewise, since C is a basis and B is linearly independent, we must
have

|B| ≤ |C|.

That is, |B| = |C|.
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Theorem 4

Let H ≤ R
n. Then H has a finite basis, and all bases of H have

the same size m ≤ n.

The number m in the theorem is called the dimension of H:

dimH = # of vectors in every basis of H.

Example 2

Compute dimNullA where

A =





3 2 1 −5
−9 −4 1 7
9 2 −5 1



 .

Daileda Linear Independence



Solution. We saw in Example 1 that NullA has a basis with two
vectors. Thus

dimNullA = 2 .

Example 3

Compute dimR
n.

Solution. If x ∈ R
n, notice that

x =








x1
x2
...

xn








= x1








1
0
...

0








+ x2








0
1
...

0








+ · · · + xn








0
...

0
1








.
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Let

ej = (δij) =















0
...

0
1
0
...

0















,

which has a 1 in the jth entry and zeros elsewhere. Then

x = x1e1 + · · ·+ xnen ∈ Span{e1, . . . , en}.

That is,
R
n = Span{e1, . . . , en}.
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Since the matrix A =
(
e1 e2 · · · en

)
is in reduced echelon

form and has a pivot in every column, we conclude that
B = {e1, . . . , en} is linearly independent.

Hence B is a basis for Rn, so that

dimR
n = |B| = n.

Remark. The basis
B = {e1, . . . , en}

is called the standard basis for Rn.
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Dimensions of Column and Null Spaces

Given an matrix A, we will be particularly interested in computing

rankA = dimColA and dimNullA.

To do this, we need to find bases for the subspaces ColA and
NullA.

Since ColA is the span of the columns of A, we know that by
discarding certain columns we will be left with a basis.

But which columns do we discard?
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This can be determined through row reduction!

Let U be the reduced echelon form of A. Then the equations

Ux = 0 and Ax = 0

have exactly the same solutions.

This tells us two things:

NullA = NullU.

The columns of U and the columns of A have the same
dependence relations.
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The pivot columns of U are clearly linearly independent, and every
non-pivot column is a linear combination of the pivot columns to
its left.

This means the same is true of the columns of A. So if we discard
the non-pivot columns of A we will be left with a basis for ColA.

Theorem 5

Let A be an m × n matrix. The pivot columns of A form a basis

for ColA. Thus:

rankA = dimColA = # pivot columns of A.

Remark. Because ColA ≤ R
m, we must have rankA ≤ m.
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Example

Let’s illustrate with an example. We have

A =







1 3 2 −6 −6
3 9 1 5 10
2 6 −1 9 14
5 15 0 14 24







RREF
−−−→







1 3 0 0 2
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 0







= U

The second column of U is a linear combination (multiple) of the
first, and the final column of U is a linear combination of the first,
third and fourth.

And the pivot columns of U are clearly linearly independent.

So the same statements are true of the columns of A.
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So to get a basis for ColA we can take the first, third and fourth
columns of A:

B =













1
3
2
5







,







2
1
−1
0







,







−6
5
9
14













.

Remark. We must use the pivot columns of A, not those of its
reduced echelon form, to get a basis for ColA.
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What about the null space of A?

Any nonzero row of U has the form

(
0 0 · · · 0 1 ci+1 · · · cn

)
,

where the 1 is in the ith column.

In the (reduced) equation Ux = 0, this corresponds to an equation
of the form

xi + ci+1xi+1 + · · · cnxn = 0 ⇔ xi = −ci+1xi+1 − · · · − cnxn.

This means that every basic variable xi can be expressed in terms
of the free variables xj with j > i .
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So when we write

x =








x1
x2
...

xn








parametrically, the free variable xj can only occur in the entries for
which i ≤ j . That is, xj can only occur among the first j entries.

Hence

x =
∑

j

xj is free

xj















∗
...

∗
1
0
...

0















← jth position.
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Let

vj =















∗
...

∗
1
0
...

0















← jth position.

Because the xj are free, we conclude that

NullA = Span{vj | xj is free}.
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Because vj has a nonzero jth entry, but no earlier vi does, vj
cannot be a linear combination of the vi preceding it.

This means the set of vj is linearly independent! So we have a
basis for NullA.

Theorem 6

Let A be an m × n matrix. Then dimNullA is the number of free

variables in Ax = 0. Equivalently,

dimNullA = # of non-pivot columns of A.
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Example

Let’s return to the matrix

A =







1 3 2 −6 −6
3 9 1 5 10
2 6 −1 9 14
5 15 0 14 24







RREF
−−−→







1 3 0 0 2
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 0







= U

It has two non-pivot columns, and therefore

dimNullA = 2.

The solutions to Ax = 0 are given by

x =









x1
x2
x3
x4
x5









=









−3x2 − 2x5
x2
x5
−x5
x5









= x2









−3
1
0
0
0









+ x5









−2
0
1
−1
1









.
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So a basis for NullA is

B =















−3
1
0
0
0









,









−2
0
1
−1
1















.

We now make a trivial, but fundamental, observation. If A is
m × n, then

n = # cols. of A

= (# pivot cols. of A) + (# non-pivot cols. of A)

= rankA+ dimNullA.

This is known as the rank theorem.

Daileda Linear Independence



The Rank Theorem

Theorem 7 (The Rank Theorem)

If A is an m × n matrix, then

n = rankA+ dimNullA.

Example 4

Let A be a 5× 7 matrix. Suppose the equation Ax = 0 has 3
linearly independent solutions. How many linearly independent
columns can A have?

Solution. The hypothesis implies that

3 ≤ dimNullA.
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The Rank Theorem then tells us that

7 = rankA+ dimNullA ≥ rankA+ 3.

Hence
rankA ≤ 7− 3 = 4.

So A can have no more than 4 linearly independent columns.

Remark. In general, the Rank Theorem shows that a lower bound
for dimNullA yields an upper bound for rankA, and vice versa.
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The Basis Theorem

Let H ≤ R
n with dimH = m ≤ n, and suppose

S = {v1, . . . , vm} ⊆ H.

If SpanS = H, then we can remove vectors from S (if necessary)
to obtain a basis for H.

But every basis for H has exactly m vectors, so S must already be
a basis.

Likewise, if S is linearly independent, we can add vectors to S (if
necessary) to obtain a basis for H.

The same reasoning shows that S is a basis for H.
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Thus:

Theorem 8 (The Basis Theorem)

Let H ≤ R
n and suppose S ⊆ H.

1. If |S| = dimH and SpanS = H, then S is a basis for H.

2. If |S| = dimH and S is linearly independent, then S is a basis

for H.

Remark. This result tells us that if S ⊆ H ≤ R
n contains the

“right number” of vectors, then we only have to check “half” of
the definition to show that S is a basis for H.
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Example 5

Let H ≤ R
n. Show that if dimH = n, then H = R

n.

Solution. Let B be a basis for H.

Then |B| = dimH = n.

Since B is linearly independent and |B| = n = dimR
n, the Basis

Theorem tells us that B is a basis for Rn.

Thus
H = SpanB = R

n.
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