Subspaces, Bases and Dimension

Ryan C. Daileda

Trinity University
Linear Algebra

Introduction

To unify our work with spans and linear independence, we introduce the notion of subspace.

We will see that every span is a subspace and that every subspace is a span.

A minimal spanning set for a subspace is a basis.

The size of a basis turns out to be an important invariant of a subspace known as its dimension.

Subspaces

Definition

A subset $H \subseteq \mathbb{R}^{n}$ is called a subspace if:

- $\mathbf{0} \in H$;
- if $\mathbf{u}, \mathbf{v} \in H$, then $\mathbf{u}+\mathbf{v} \in H$;
- if $\mathbf{v} \in H$ and $c \in \mathbb{R}$, then $c \mathbf{v} \in H$.

In this case we write $H \leq \mathbb{R}^{n}$.

Examples.

- $H=\{\mathbf{0}\}$ and $H=\mathbb{R}^{n}$ are both subspaces of \mathbb{R}^{n}.
- For any finite $\mathcal{S} \subseteq \mathbb{R}^{n}$, Span $\mathcal{S} \leq \mathbb{R}^{n}$ by an earlier result.
- If A is an $m \times n$ matrix, then $\operatorname{Col} A \leq \mathbb{R}^{m}$ and Null $A \leq \mathbb{R}^{n}$.

Nullspaces are Subspaces

The final statement requires proof. Since $\boldsymbol{A 0}=\mathbf{0}$, we have $\mathbf{0} \in \operatorname{Null} A$.

Suppose $\mathbf{x}, \mathbf{y} \in \operatorname{Null} A$ and $c \in \mathbb{R}$. Then

$$
A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}=\mathbf{0}+\mathbf{0}=\mathbf{0}
$$

so $\mathbf{x}+\mathbf{y} \in \operatorname{Null} A$, too.
We also have

$$
A(c \mathbf{x})=c(A \mathbf{x})=c \mathbf{0}=\mathbf{0}
$$

which means $c x \in \operatorname{Null} A$.
These three facts show that $\operatorname{Null} A$ is a subspace of \mathbb{R}^{n}.

Spans are the prototypical examples of subspaces. In fact, they are the only examples.

We will say that a subspace $H \leq \mathbb{R}^{n}$ is finitely generated if

$$
H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}
$$

for some vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$ (which must necessarily belong to H).

We claim that every subspace $H \leq \mathbb{R}^{n}$ is finitely generated.
Suppose this is not the case. Then for any finite linearly independent set

$$
\mathcal{S}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\} \subseteq H
$$

we must have $\operatorname{Span} \mathcal{S} \subseteq H$ (because H is a subspace) but Span $\mathcal{S} \neq H$.

So we can choose $\mathbf{v}_{k+1} \in H$ that is not in Span \mathcal{S}.

Since $\mathbf{v}_{k+1} \notin \operatorname{Span} \mathcal{S}$ and \mathcal{S} is linearly independent, then so is $\mathcal{S}^{\prime}=\mathcal{S} \cup\left\{\mathbf{v}_{k+1}\right\}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}\right\}$ (there's no way any vector can be a linear combination of those preceding it).

This means that if we start with $\mathcal{S}=\varnothing$, say, we can build linearly independent subsets of H with as many vectors as we like.

But $H \leq \mathbb{R}^{n}$, and in \mathbb{R}^{n} linearly independent subsets can have no more than n vectors.

So H cannot fail to be finitely generated.

This proves:

Theorem 1

Let $H \leq \mathbb{R}^{n}$. Then H is finitely generated. That is,

$$
H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}
$$

for some $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$.

That is, the only subspaces of \mathbb{R}^{n} are the spans!

Recall that by removing vectors from a spanning set that are linear combinations of the others, we can always arrive at a spanning set that is linearly independent.

So we immediately obtain the following corollary:

Corollary 1
Let $H \leq \mathbb{R}^{n}$. Then

$$
H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}
$$

for some linearly independent $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}, m \leq n$.

This leads to the following definition.

Definition

Let $H \leq \mathbb{R}^{n}$. We say that $\mathcal{B} \subseteq \mathbb{R}^{n}$ is a basis for H provided:

1. \mathcal{B} is linearly independent.
2. $H=\operatorname{Span} \mathcal{B}$.

The corollary to Theorem 1 can now be rephrased as follows: every subspace of \mathbb{R}^{n} has a basis with at most n vectors.

Example 1

Find a basis for Null A, where

$$
A=\left(\begin{array}{cccc}
3 & 2 & 1 & -5 \\
-9 & -4 & 1 & 7 \\
9 & 2 & -5 & 1
\end{array}\right)
$$

Solution. We have

$$
A \xrightarrow{\text { RREF }}\left(\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -4 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore the solutions to $A \mathbf{x}=\mathbf{0}$ are given by

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{3}-x_{4} \\
-2 x_{3}+4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{3}\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-1 \\
4 \\
0 \\
1
\end{array}\right)
$$

with x_{3} and x_{4} free. Thus

$$
\text { Null } A=\operatorname{Span} \underbrace{\left\{\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
4 \\
0 \\
1
\end{array}\right)\right\}}_{\mathcal{B}} .
$$

Since the vectors on the RHS are not multiples of one another, they are linearly independent. Thus \mathcal{B} is a basis for $\operatorname{Null} A$.

Completing a Linearly Independent Set

Let $H \leq \mathbb{R}^{n}$. Starting with a spanning set for H, we can remove appropriate vectors to obtain a basis for H.

On the other hand, suppose we start with a linearly independent set $\mathcal{S} \subseteq H$.

Then $\operatorname{Span} \mathcal{S} \subseteq H$ (since H is closed under vector addition and scalar multiplication).

If Span $\mathcal{S} \neq H$, we can choose a vector $\mathbf{v} \in H$ that does not belong to Span \mathcal{S}.

Then the set $\mathcal{S}^{\prime}=\mathcal{S} \cup\{\mathbf{v}\}$ must be linearly independent as well (no vector is a linear combo. of those preceding it), and Span $\mathcal{S}^{\prime} \subseteq H$.

Now replace \mathcal{S} with \mathcal{S}^{\prime} and repeat.

Because $|\mathcal{S}| \leq n$, this process cannot go on forever. That is, eventually we will have $\operatorname{Span} \mathcal{S}=H$ with \mathcal{S} linearly independent.

Theorem 2

Let $H \leq \mathbb{R}^{n}$.

1. If $\operatorname{Span} \mathcal{S}=H$, then \mathcal{S} contains a basis for H.
2. If $\mathcal{S} \subseteq H$ is linearly independent, then H has a basis containing \mathcal{S}.

Remarks

Let $H \leq \mathbb{R}^{n}$. Theorem 2 states that:

- Every spanning set (of H) contains a basis (for H).
- Every linearly independent set (in H) can be completed to a basis (for H).

These two (complementary) facts can be extremely useful!

Dimension

Every subspace of \mathbb{R}^{n} has a basis. As we will now see, the number of vectors in a basis is invariant.

Let $H \leq \mathbb{R}^{n}$ and let \mathcal{B} be a basis for H with $|\mathcal{B}|=m \leq n$.
Suppose $\mathcal{S} \subseteq H$ is a linearly independent subset of H.
Then we know that

$$
[\mathcal{S}]_{\mathcal{B}} \subseteq \mathbb{R}^{m}
$$

is a linearly independent subset of \mathbb{R}^{m}.
This means that $|\mathcal{S}|=\left|[\mathcal{S}]_{\mathcal{B}}\right| \leq m$. Thus:

Theorem 3

Let $H \leq \mathbb{R}^{n}$. If H has a basis of size m, and $\mathcal{S} \subseteq H$ is linearly independent, then

$$
|\mathcal{S}| \leq m
$$

Suppose that $H \leq \mathbb{R}^{n}$ has a basis \mathcal{B} with $|\mathcal{B}| \leq n$.
Suppose $\mathcal{C} \subseteq H$ is another basis for H. Note that \mathcal{C} cannot contain more than n vectors.

Because \mathcal{B} is a basis and \mathcal{C} is linearly independent, Theorem 3 tells us that

$$
|\mathcal{C}| \leq|\mathcal{B}| .
$$

Likewise, since \mathcal{C} is a basis and \mathcal{B} is linearly independent, we must have

$$
|\mathcal{B}| \leq|\mathcal{C}| .
$$

That is, $|\mathcal{B}|=|\mathcal{C}|$.

Theorem 4

Let $H \leq \mathbb{R}^{n}$. Then H has a finite basis, and all bases of H have the same size $m \leq n$.

The number m in the theorem is called the dimension of H :

$$
\operatorname{dim} H=\# \text { of vectors in every basis of } H
$$

Example 2

Compute $\operatorname{dim} \operatorname{Null} A$ where

$$
A=\left(\begin{array}{cccc}
3 & 2 & 1 & -5 \\
-9 & -4 & 1 & 7 \\
9 & 2 & -5 & 1
\end{array}\right)
$$

Solution. We saw in Example 1 that Null A has a basis with two vectors. Thus

$$
\operatorname{dim} \text { Null } A=2 \text {. }
$$

Example 3

Compute $\operatorname{dim} \mathbb{R}^{n}$.

Solution. If $\mathbf{x} \in \mathbb{R}^{n}$, notice that

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1}\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)+x_{2}\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

Let

$$
\mathbf{e}_{j}=\left(\delta_{i j}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right),
$$

which has a 1 in the j th entry and zeros elsewhere. Then

$$
\mathbf{x}=x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n} \in \operatorname{Span}\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}
$$

That is,

$$
\mathbb{R}^{n}=\operatorname{Span}\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}
$$

Since the matrix $A=\left(\begin{array}{llll}\mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{n}\end{array}\right)$ is in reduced echelon form and has a pivot in every column, we conclude that $\mathcal{B}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is linearly independent.

Hence \mathcal{B} is a basis for \mathbb{R}^{n}, so that

$$
\operatorname{dim} \mathbb{R}^{n}=|\mathcal{B}|=n
$$

Remark. The basis

$$
\mathcal{B}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}
$$

is called the standard basis for \mathbb{R}^{n}.

Dimensions of Column and Null Spaces

Given an matrix A, we will be particularly interested in computing $\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A$ and $\operatorname{dim} \operatorname{Null} A$.

To do this, we need to find bases for the subspaces $\operatorname{Col} A$ and Null A.

Since $\operatorname{Col} A$ is the span of the columns of A, we know that by discarding certain columns we will be left with a basis.

But which columns do we discard?

This can be determined through row reduction!

Let U be the reduced echelon form of A. Then the equations

$$
U \mathbf{x}=\mathbf{0} \quad \text { and } \quad A \mathbf{x}=\mathbf{0}
$$

have exactly the same solutions.
This tells us two things:

- Null $A=$ Null U.
- The columns of U and the columns of A have the same dependence relations.

The pivot columns of U are clearly linearly independent, and every non-pivot column is a linear combination of the pivot columns to its left.

This means the same is true of the columns of A. So if we discard the non-pivot columns of A we will be left with a basis for $\operatorname{Col} A$.

Theorem 5

Let A be an $m \times n$ matrix. The pivot columns of A form a basis for $\operatorname{Col} A$. Thus:
$\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A=\#$ pivot columns of A.

Remark. Because Col $A \leq \mathbb{R}^{m}$, we must have rank $A \leq m$.

Example

Let's illustrate with an example. We have

$$
A=\left(\begin{array}{ccccc}
1 & 3 & 2 & -6 & -6 \\
3 & 9 & 1 & 5 & 10 \\
2 & 6 & -1 & 9 & 14 \\
5 & 15 & 0 & 14 & 24
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{ccccc}
1 & 3 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=U
$$

The second column of U is a linear combination (multiple) of the first, and the final column of U is a linear combination of the first, third and fourth.

And the pivot columns of U are clearly linearly independent.

So the same statements are true of the columns of A.

So to get a basis for $\operatorname{Col} A$ we can take the first, third and fourth columns of A :

$$
\mathcal{B}=\left\{\left(\begin{array}{l}
1 \\
3 \\
2 \\
5
\end{array}\right), \quad\left(\begin{array}{c}
2 \\
1 \\
-1 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
-6 \\
5 \\
9 \\
14
\end{array}\right)\right\}
$$

Remark. We must use the pivot columns of A, not those of its reduced echelon form, to get a basis for $\operatorname{Col} A$.

What about the null space of A ?

Any nonzero row of U has the form

$$
\left(\begin{array}{llllllll}
0 & 0 & \cdots & 0 & 1 & c_{i+1} & \cdots & c_{n}
\end{array}\right),
$$

where the 1 is in the i th column.
In the (reduced) equation $U \mathbf{x}=\mathbf{0}$, this corresponds to an equation of the form

$$
x_{i}+c_{i+1} x_{i+1}+\cdots c_{n} x_{n}=0 \quad \Leftrightarrow \quad x_{i}=-c_{i+1} x_{i+1}-\cdots-c_{n} x_{n} .
$$

This means that every basic variable x_{i} can be expressed in terms of the free variables x_{j} with $j>i$.

So when we write

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

parametrically, the free variable x_{j} can only occur in the entries for which $i \leq j$. That is, x_{j} can only occur among the first j entries. Hence

$$
\mathbf{x}=\sum_{\substack{j \\
x_{j} \text { is free }}} x_{j}\left(\begin{array}{c}
* \\
\vdots \\
* \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \leftarrow j \text { th position. }
$$

Let

$$
\mathbf{v}_{j}=\left(\begin{array}{c}
* \\
\vdots \\
* \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \leftarrow j \text { th position. }
$$

Because the x_{j} are free, we conclude that
Null $A=\operatorname{Span}\left\{\mathbf{v}_{j} \mid x_{j}\right.$ is free $\}$.

Because \mathbf{v}_{j} has a nonzero j th entry, but no earlier \mathbf{v}_{i} does, \mathbf{v}_{j} cannot be a linear combination of the \mathbf{v}_{i} preceding it.

This means the set of \mathbf{v}_{j} is linearly independent! So we have a basis for Null A.

Theorem 6

Let A be an $m \times n$ matrix. Then $\operatorname{dim} \operatorname{Null} A$ is the number of free variables in $A \mathbf{x}=\mathbf{0}$. Equivalently,
$\operatorname{dim} \operatorname{Null} A=\#$ of non-pivot columns of A.

Example

Let's return to the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 3 & 2 & -6 & -6 \\
3 & 9 & 1 & 5 & 10 \\
2 & 6 & -1 & 9 & 14 \\
5 & 15 & 0 & 14 & 24
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{ccccc}
1 & 3 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=U
$$

It has two non-pivot columns, and therefore

$$
\operatorname{dim} \operatorname{Null} A=2 .
$$

The solutions to $A \mathbf{x}=\mathbf{0}$ are given by

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-3 x_{2}-2 x_{5} \\
x_{2} \\
x_{5} \\
-x_{5} \\
x_{5}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
-2 \\
0 \\
1 \\
-1 \\
1
\end{array}\right) .
$$

So a basis for Null A is

$$
\mathcal{B}=\left\{\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
-2 \\
0 \\
1 \\
-1 \\
1
\end{array}\right)\right\}
$$

We now make a trivial, but fundamental, observation. If A is $m \times n$, then

$$
\begin{aligned}
n & =\# \text { cols. of } A \\
& =(\# \text { pivot cols. of } A)+(\# \text { non-pivot cols. of } A) \\
& =\operatorname{rank} A+\operatorname{dim} \text { Null } A .
\end{aligned}
$$

This is known as the rank theorem.

The Rank Theorem

Theorem 7 (The Rank Theorem)

If A is an $m \times n$ matrix, then

$$
n=\operatorname{rank} A+\operatorname{dim} \operatorname{Null} A .
$$

Example 4

Let A be a 5×7 matrix. Suppose the equation $A \mathbf{x}=\mathbf{0}$ has 3 linearly independent solutions. How many linearly independent columns can A have?

Solution. The hypothesis implies that

$$
3 \leq \operatorname{dim} \text { Null } A .
$$

The Rank Theorem then tells us that

$$
7=\operatorname{rank} A+\operatorname{dim} \operatorname{Null} A \geq \operatorname{rank} A+3
$$

Hence

$$
\operatorname{rank} A \leq 7-3=4
$$

So A can have no more than 4 linearly independent columns.

Remark. In general, the Rank Theorem shows that a lower bound for $\operatorname{dim} \operatorname{Null} A$ yields an upper bound for rank A, and vice versa.

The Basis Theorem

Let $H \leq \mathbb{R}^{n}$ with $\operatorname{dim} H=m \leq n$, and suppose $\mathcal{S}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\} \subseteq H$.

If $\operatorname{Span} \mathcal{S}=H$, then we can remove vectors from \mathcal{S} (if necessary) to obtain a basis for H.

But every basis for H has exactly m vectors, so \mathcal{S} must already be a basis.

Likewise, if \mathcal{S} is linearly independent, we can add vectors to \mathcal{S} (if necessary) to obtain a basis for H.

The same reasoning shows that \mathcal{S} is a basis for H.

Thus:

Theorem 8 (The Basis Theorem)

Let $H \leq \mathbb{R}^{n}$ and suppose $\mathcal{S} \subseteq H$.

1. If $|\mathcal{S}|=\operatorname{dim} H$ and $\operatorname{Span} \mathcal{S}=H$, then \mathcal{S} is a basis for H.
2. If $|\mathcal{S}|=\operatorname{dim} H$ and \mathcal{S} is linearly independent, then \mathcal{S} is a basis for H.

Remark. This result tells us that if $\mathcal{S} \subseteq H \leq \mathbb{R}^{n}$ contains the "right number" of vectors, then we only have to check "half" of the definition to show that \mathcal{S} is a basis for H.

Example 5

Let $H \leq \mathbb{R}^{n}$. Show that if $\operatorname{dim} H=n$, then $H=\mathbb{R}^{n}$.

Solution. Let \mathcal{B} be a basis for H.

Then $|\mathcal{B}|=\operatorname{dim} H=n$.

Since \mathcal{B} is linearly independent and $|\mathcal{B}|=n=\operatorname{dim} \mathbb{R}^{n}$, the Basis Theorem tells us that \mathcal{B} is a basis for \mathbb{R}^{n}.

Thus

$$
H=\operatorname{Span} \mathcal{B}=\mathbb{R}^{n}
$$

