Linear Transformations Continued

Ryan C. Daileda

Trinity University

Linear Algebra

Recall

Every linear transformation $T: R^{n} \rightarrow \mathbb{R}^{m}$ is given by $T(\mathbf{x})=A \mathbf{x}$, where A is the standard matrix

$$
A=\left(\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right), \mathbf{e}_{j}=\left(\delta_{i j}\right) .
$$

Using this result we showed that the standard matrix for rotation in \mathbb{R}^{2} by θ radians about the origin is

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

What about other common geometric operations on \mathbb{R}^{2} ?

TABLE 1 Reflections

Transformation
Reflection through the x_{1}-axis

Reflection through the x_{2}-axis

$$
\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

Reflection through the line $x_{2}=x_{1}$

$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Reflection through the line $x_{2}=-x_{1}$

$$
\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

Remark. Once we know a little matrix algebra, we will be able to compute the standard matrix for reflection across any line through the origin.

Reflection through
the origin

$$
\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

TABLE 2 Contractions and Expansions

Transformation
Horizontal contraction and expansion

Vertical contraction and expansion

$0<k<1$

TABLE 3 Shears

TABLE 4 Projections

Transformation

Projection onto the x_{1}-axis

$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
$\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
the x_{2}-axis

Daileda

Linear Transformations

The Kernel of a Linear Transformation

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, it's kernel is

$$
\operatorname{ker} T=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid T(\mathbf{x})=\mathbf{0}\right\}
$$

That is, ker T consists of all solutions in \mathbb{R}^{n} to the equation $T(\mathbf{x})=\mathbf{0}$.

If A is the standard matrix of T, then we immediately see that

$$
\operatorname{ker} T=\operatorname{Null} A \text {, }
$$

which means we can compute ker T by row reducing A.

We have seen that the solutions to $A \mathbf{x}=\mathbf{b}$ (when they exist) are always unique iff Null $A=\{0\}$.

This immediately imples:

Theorem 1

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if and only if ker $T=\{\mathbf{0}\}$.

Recall that if $A \mathbf{x}_{0}=\mathbf{b}$, then every solution to $T(\mathbf{x})=A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}_{0}+\operatorname{Null} A=\mathbf{x}_{0}+\operatorname{ker} T .
$$

Geometrically speaking, this says that the preimage of any point $\mathbf{b} \in \operatorname{im} T$ is a translation of $\operatorname{ker} T \leq \mathbb{R}^{n}$.

So ker T, in some sense, measures the failure of T to be one-to-one: the larger ker T is, the more vectors get mapped together under T.

Finally, let's state the relationship between the notions of one-to-one and onto to linear independence and spanning.

Theorem 2

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with standard matrix A.

1. T is onto iff $\operatorname{Col} A=\mathbb{R}^{m}$ iff the columns of A span \mathbb{R}^{m}.
2. T is one-to-one iff $\operatorname{ker} T=\operatorname{Null} A=\{0\}$ iff the columns of A are linearly independent.

Addition of Linear Transformations

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are linear transformations, we define

$$
(T+S)(\mathbf{x})=T(\mathbf{x})+S(\mathbf{x})
$$

Remark. This is the usual way functions would be added in calculus.

This is linear since

$$
\begin{aligned}
(T+S)(\mathbf{x}+\mathbf{y}) & =T(\mathbf{x}+\mathbf{y})+S(\mathbf{x}+\mathbf{y}) \\
& =T(\mathbf{x})+T(\mathbf{y})+S(\mathbf{x})+S(\mathbf{y}) \\
& =T(\mathbf{x})+S(\mathbf{x})+T(\mathbf{y})+S(\mathbf{y}) \\
& =(T+S)(\mathbf{x})+(T+S)(\mathbf{y})
\end{aligned}
$$

and similarly $(T+S)(c \mathbf{x})=c(T+S)(\mathbf{x})$.

Scalar Multiplication of Linear Transformations

Given a scalar $c \in \mathbb{R}$ we also define

$$
(c T)(\mathbf{x})=c T(\mathbf{x})
$$

This, too, is linear:

$$
\begin{aligned}
(c T)(\mathbf{x}+\mathbf{y}) & =c T(\mathbf{x}+\mathbf{y}) \\
& =c(T(\mathbf{x})+T(\mathbf{y})) \\
& =c T(\mathbf{x})+c T(\mathbf{y}) \\
& =(c T)(\mathbf{x})+(c T)(\mathbf{y})
\end{aligned}
$$

and likewise $(c T)(a \mathbf{x})=a(c T)(\mathbf{x})$.
The zero transformation is given by $\mathbf{x} \mapsto \mathbf{0} \in \mathbb{R}^{m}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. We will denote it by 0 .

Properties

The addition and scalar multiplication of linear transformations obeys many of the "usual" laws of arithmetic.

Theorem 3

Let S, T and U be linear transformations $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and let $c, d \in \mathbb{R}$ be scalars. Then:

1. $S+T=T+S$
2. $(S+T)+U=S+(T+U)$
3. $S+0=0+S=S$
4. $c(S+T)=c S+c T$
5. $(c+d) S=c S+d S$
6. $c(d S)=(c d) S$

These all follow from the fact that vectors in \mathbb{R}^{m} enjoy the same properties.

Suppose $S, T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are linear transformations.
Because $S+T$ is linear, it is given by a matrix.
Question. How is standard matrix of $S+T$ related to the standard matrices of S and T ?

The standard matrix for $S+T$ is given by

$$
\left.\begin{array}{l}
\left((S+T)\left(\mathbf{e}_{1}\right)\right. \\
(S+T)\left(\mathbf{e}_{2}\right) \\
\cdots
\end{array} \quad(S+T)\left(\mathbf{e}_{n}\right)\right) \text { (} \begin{array}{llll}
S\left(\mathbf{e}_{1}\right)+T\left(\mathbf{e}_{1}\right) & S\left(\mathbf{e}_{2}\right)+T\left(\mathbf{e}_{2}\right) & \cdots & S\left(\mathbf{e}_{n}\right)+T\left(\mathbf{e}_{n}\right)
\end{array}
$$

which is the matrix obtained by adding corresponding columns and the standard matrices for S and T.

Given two $m \times n$ matrices

$$
\left.\begin{array}{l}
A=\left(\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right)=\left(a_{i j}\right.
\end{array}\right) .
$$

we therefore define their sum to be

$$
A+B=\left(\begin{array}{llll}
\mathbf{a}_{1}+\mathbf{b}_{1} & \mathbf{a}_{2}+\mathbf{b}_{2} & \cdots & \mathbf{a}_{n}+\mathbf{b}_{n}=\left(a_{i j}+b_{i j}\right)
\end{array}\right)
$$

Remark. This is simply the matrix obtained by adding corresponding entries in A and B.

Our work above shows that if A, B are the standard matrices for $S, T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, respectively, then the standard matrix for $S+T$ is $A+B$.

Likewise, if we define

$$
c A=\left(\begin{array}{llll}
c \mathbf{a}_{1} & c \mathbf{a}_{2} & \cdots & c \mathbf{a}_{n}
\end{array}\right)=\left(c a_{i j}\right)
$$

and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has standard matrix A, then the standard matrix of $c T$ is $c A$.
Theorem 3 immediately implies:

Theorem 4

Let A, B and C be $m \times n$ matrices, and let $c, d \in \mathbb{R}$ be scalars.
Then:

$$
\begin{array}{lll}
\text { 1. } & A+B=B+A & \text { 4. } \\
c(A+B)=c A+c B \\
\text { 2. } & (A+B)+C=A+(B+C) & \text { 5. } \\
(c+d) A=c A+d A \\
\text { 3. } & A+0=0+A=A & \text { 6. } \\
c(d A)=(c d) A
\end{array}
$$

Here 0 denotes the $m \times n$ zero matrix, which is the standard matrix of the zero transformation.

We have

$$
\left(\begin{array}{ccc}
0 & 3 & -1 \\
4 & 0 & 7
\end{array}\right)+\left(\begin{array}{ccc}
-6 & 2 & 1 \\
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{ccc}
-6 & 5 & 0 \\
5 & 2 & 10
\end{array}\right)
$$

and

$$
3\left(\begin{array}{ccc}
1 & 2 & 3 \\
-5 & -4 & -3 \\
1 & 0 & -1
\end{array}\right)=\left(\begin{array}{ccc}
3 & 6 & 9 \\
-15 & -12 & -9 \\
3 & 0 & -3
\end{array}\right)
$$

Notice that for any scalar $a \in \mathbb{R}$ we have

$$
\left(\begin{array}{llll}
a & & & \\
& a & & \\
& & \ddots & \\
& & & a
\end{array}\right)=a\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right)=a l .
$$

Matrix addition and scalar multiplication interact with the matrix vector product in the way one would hope.
For instance, if A and B are $m \times n$, and $S(\mathbf{x})=A \mathbf{x}, T(\mathbf{x})=B \mathbf{x}$, then $A+B$ is the matrix of $S+T$.
Thus

$$
(A+B) \mathbf{x}=(S+T)(\mathbf{x})=S(\mathbf{x})+T(\mathbf{x})=A \mathbf{x}+B \mathbf{x}
$$

Scalar multiplication also interacts nicely with the matrix-vector product.

Theorem 5

Let A, B be $m \times n$ matrices, let $\mathbf{x} \in \mathbb{R}^{n}$ and let $a \in \mathbb{R}$. Then:

1. $(A+B) \mathbf{x}=A \mathbf{x}+B \mathbf{x}$
2. $(c A) \mathbf{x}=c(A \mathbf{x})=A(c \mathbf{x})$

Example

Recall the rental car homework problem in which you were asked to solve the equation $A \mathbf{x}=\mathbf{x}$.

We can now write

$$
A \mathbf{x}=\mathbf{x}=I \mathbf{x} \quad \Leftrightarrow \quad A \mathbf{x}-I \mathbf{x}=0 \Leftrightarrow(A-I) \mathbf{x}=\mathbf{0}
$$

which neatly explains the addition of -1 to the diagonal entries of A.

The more general equation $A \mathbf{x}=\lambda \mathbf{x}$ will arise in our study of eigenvalues and eigenvectors. Analogous reasoning shows that

$$
A \mathbf{x}=\lambda \mathbf{x}=\lambda / \mathbf{x} \Leftrightarrow(A-\lambda /) \mathbf{x}=\mathbf{0}
$$

which can be solved by row reducing $A-\lambda I$.

References

All diagrams were taken from

- Lay, David C., et al. Linear Algebra and Its Applications. 5th ed., Pearson, 2016.
and are probably subject to copyright.

