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Recall

Every linear transformation T : R" — R™ is given by T(x) = Ax,
where A is the standard matrix

A= (T(e1) T(e2) --- T(en)), € = (d)

Using this result we showed that the standard matrix for rotation
in R? by @ radians about the origin is

cosf) —sind
sind cosf -
What about other common geometric operations on R2?
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TABLE 1 Reflections

Transformation

Image of the Unit Square

Standard Matrix

Reflection through X
the x-axis

[o 1]

Reflection through
the x,-axis
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Reflection through %) 0 1
the line x, = x,

Reflection through X 0 —1]
the line x, = —x,
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Remark. Once we know a little matrix algebra, we will be able to
compute the standard matrix for reflection across any line through
the origin.

Reflection through *3 -1 0
the origin [ 0 =1 ]
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TABLE 2 Contractions and Expansions

Transformation
Horizontal
contraction

and expansion

Image of the Unit Square

£ p?
0

m] -
T e

X. .k‘
0<k<l1 k>1
Vertical Xy X 1
contraction 4 0
and expansion |:k:| ’ }
m i
< X - %)
T T
0 0
0<k<l1 k>1
[BETI[LEY Linear Transformations

Standard Matrix

0
k



TABLE 3 Shears

Transformation Image of the Unit Square Standard Matrix
Horizontal shear %3 E-m T 2
' 0 1
L
Vertical shear % % [ 1 ()]
‘ ko1

k<0 k>0
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TABLE 4 Projections

Transformation Image of the Unit Square Standard Matrix

Projection onto
the x,-axis

Projection onto
the x,-axis
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The Kernel of a Linear Transformation

If T:R" — R™is a linear transformation, it's kernel is
ker T = {x € R"| T(x) = 0}.
That is, ker T consists of all solutions in R” to the equation

T(x)=0.

If A is the standard matrix of T, then we immediately see that
ker T = Null A,

which means we can compute ker T by row reducing A.
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We have seen that the solutions to Ax = b (when they exist) are
always unique iff Null A = {0}.

This immediately imples:

A linear transformation T : R" — R™ is one-to-one if and only if
ker T = {0}.

Recall that if Axg = b, then every solution to T(x) = Ax =b is
given by
xo + Null A =xp + ker T.

Geometrically speaking, this says that the preimage of any point
b € im T is a translation of ker T < R".
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So ker T, in some sense, measures the failure of T to be
one-to-one: the larger ker T is, the more vectors get mapped
together under T.

Finally, let's state the relationship between the notions of
one-to-one and onto to linear independence and spanning.

Theorem 2

Let T : R"” — R™ be a linear transformation with standard matrix
A.
1. T is onto iff Col A= R™ jff the columns of A span R™.

2. T is one-to-one iff ker T = Null A= {0} iff the columns of A
are linearly independent.
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Addition of Linear Transformations

If T:R" - R™and S:R"™ — R™ are linear transformations, we

define
(T +S)(x) = T(x) + S(x).

Remark. This is the usual way functions would be added in
calculus.

This is linear since
(T+S)(x+y)=T(x+y)+S(x+y)
= T(x) + T(y) + S(x) + S(y)
= T(x) +S(x) + T(y) + S(y)
=(T+35)(x) + (T + 5)(y),

and similarly (T 4 S)(cx) = ¢(T + S)(x).



Scalar Multiplication of Linear Transformations

Given a scalar ¢ € R we also define

(cT)(x) = cT(x).

This, too, is linear:

(cT)(x+y)=cT(x+y)
=c(T() + T(y))
=cT(x)+ cT(y)
= (eT)(x) + (cT)(y),
and likewise (cT)(ax) = a(cT)(x).

The zero transformation is given by x — 0 € R™ for all x € R".
We will denote it by 0.
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Properties

The addition and scalar multiplication of linear transformations
obeys many of the "usual” laws of arithmetic.

Theorem 3

Let S, T and U be linear transformations R" — R™, and let
c,d € R be scalars. Then:

1. S+T=T+S 4. ¢(S+T)=cS+cT
2. (S+N+U=5S+(T+U) 5. (c+d)S=cS+dS
3. S+0=0+5=S 6. c(dS)=(cd)S

These all follow from the fact that vectors in R™ enjoy the same
properties.
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Suppose S, T : R" — R™ are linear transformations.
Because S + T is linear, it is given by a matrix.

Question. How is standard matrix of S + T related to the
standard matrices of S and T7

The standard matrix for S + T is given by
((S+T)er) (S+T)(e2) -+ (S+T)len))
= (S(e1) + T(e1) S(ex)+ T(e2) --- S(en)+ T(en))

which is the matrix obtained by adding corresponding columns and
the standard matrices for S and T.

[BETI[LEY Linear Transformations



Given two m X n matrices
A= (a1 a - an) =(ay)
B (b bo o)~ (by

we therefore define their sum to be

A+B= (ag+b; ax+by -+ a,+b,=(a;+by)).

Remark. This is simply the matrix obtained by adding
corresponding entries in A and B.

Our work above shows that if A, B are the standard matrices for
S, T :R" — R™, respectively, then the standard matrix for S+ T
is A+ B.
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Likewise, if we define
cA= (cay cap --- cap) = (caj),

and T : R"” — R™ has standard matrix A, then the standard
matrix of ¢T is cA.

Theorem 3 immediately implies:

Let A, B and C be m x n matrices, and let c,d € R be scalars.
Then:

1. A+B=B+A 4. c(A+B)=cA+cB
2. A+B)+C=A+(B+C) 5. (c+d)A=cA+dA
3. A+0=0+A=A 6. c(dA) = (cd)A

Here 0 denotes the m x n zero matrix, which is the standard
matrix of the zero transformation.
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We have
0 3 -1 n -6 2 1\ (-6 5 0
4 0 7 1 23/ \5 2 10
and
1 2 3 3 6 9
31-5 -4 -3]=1]-15 —-12 -9
1 0o -1 3 0 -3

Notice that for any scalar a € R we have

a 1
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Matrix addition and scalar multiplication interact with the matrix
vector product in the way one would hope.

For instance, if A and B are m x n, and S(x) = Ax, T(x) = Bx,
then A4 B is the matrix of S+ T.

Thus

(A+B)x=(S+ T)(x) = S(x) + T(x) = Ax + Bx.

Scalar multiplication also interacts nicely with the matrix-vector
product.

Let A, B be m x n matrices, let x € R" and let a € R. Then:
1. (A+ B)x = Ax + Bx
2. (cA)x = c(Ax) = A(cx)
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Example

Recall the rental car homework problem in which you were asked
to solve the equation Ax = x.

We can now write
Ax=x=1Ix & Ax—Ix=0 & (A-1I)x=0,

which neatly explains the addition of —1 to the diagonal entries of
A.

The more general equation Ax = Ax will arise in our study of
eigenvalues and eigenvectors. Analogous reasoning shows that

Ax=Xx=MAx & (A-X)x=0,
which can be solved by row reducing A — Al.
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