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Recall

Every linear transformation T : Rn → R
m is given by T (x) = Ax,

where A is the standard matrix

A =
(

T (e1) T (e2) · · · T (en)
)

, ej = (δij ).

Using this result we showed that the standard matrix for rotation
in R

2 by θ radians about the origin is

(

cos θ − sin θ
sin θ cos θ

)

.

What about other common geometric operations on R
2?
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Remark. Once we know a little matrix algebra, we will be able to
compute the standard matrix for reflection across any line through
the origin.
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The Kernel of a Linear Transformation

If T : Rn → R
m is a linear transformation, it’s kernel is

kerT = {x ∈ R
n |T (x) = 0}.

That is, kerT consists of all solutions in R
n to the equation

T (x) = 0.

If A is the standard matrix of T , then we immediately see that

kerT = NullA,

which means we can compute kerT by row reducing A.
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We have seen that the solutions to Ax = b (when they exist) are
always unique iff NullA = {0}.

This immediately imples:

Theorem 1

A linear transformation T : Rn → R
m is one-to-one if and only if

kerT = {0}.

Recall that if Ax0 = b, then every solution to T (x) = Ax = b is
given by

x0 + NullA = x0 + kerT .

Geometrically speaking, this says that the preimage of any point
b ∈ imT is a translation of kerT ≤ R

n.
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So kerT , in some sense, measures the failure of T to be
one-to-one: the larger kerT is, the more vectors get mapped
together under T .

Finally, let’s state the relationship between the notions of
one-to-one and onto to linear independence and spanning.

Theorem 2

Let T : Rn → R
m be a linear transformation with standard matrix

A.

1. T is onto iff ColA = R
m iff the columns of A span R

m.

2. T is one-to-one iff kerT = NullA = {0} iff the columns of A

are linearly independent.
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Addition of Linear Transformations

If T : Rn → R
m and S : Rn → R

m are linear transformations, we
define

(T + S)(x) = T (x) + S(x).

Remark. This is the usual way functions would be added in
calculus.

This is linear since

(T + S)(x+ y) = T (x+ y) + S(x+ y)

= T (x) + T (y) + S(x) + S(y)

= T (x) + S(x) + T (y) + S(y)

= (T + S)(x) + (T + S)(y),

and similarly (T + S)(cx) = c(T + S)(x).
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Scalar Multiplication of Linear Transformations

Given a scalar c ∈ R we also define

(cT )(x) = cT (x).

This, too, is linear:

(cT )(x + y) = cT (x + y)

= c(T (x) + T (y))

= cT (x) + cT (y)

= (cT )(x) + (cT )(y),

and likewise (cT )(ax) = a(cT )(x).

The zero transformation is given by x 7→ 0 ∈ R
m for all x ∈ R

n.
We will denote it by 0.
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Properties

The addition and scalar multiplication of linear transformations
obeys many of the ”usual” laws of arithmetic.

Theorem 3

Let S, T and U be linear transformations Rn → R
m, and let

c , d ∈ R be scalars. Then:

1. S + T = T + S 4. c(S + T ) = cS + cT

2. (S + T ) + U = S + (T + U) 5. (c + d)S = cS + dS

3. S + 0 = 0 + S = S 6. c(dS) = (cd)S

These all follow from the fact that vectors in R
m enjoy the same

properties.
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Suppose S ,T : Rn → R
m are linear transformations.

Because S + T is linear, it is given by a matrix.

Question. How is standard matrix of S + T related to the
standard matrices of S and T?

The standard matrix for S + T is given by

(

(S + T )(e1) (S + T )(e2) · · · (S + T )(en)
)

=
(

S(e1) + T (e1) S(e2) + T (e2) · · · S(en) + T (en)
)

which is the matrix obtained by adding corresponding columns and
the standard matrices for S and T .
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Given two m × n matrices

A =
(

a1 a2 · · · an
)

= (aij)

B =
(

b1 b2 · · · bn
)

= (bij)

we therefore define their sum to be

A+ B =
(

a1 + b1 a2 + b2 · · · an + bn = (aij + bij)
)

.

Remark. This is simply the matrix obtained by adding
corresponding entries in A and B .

Our work above shows that if A,B are the standard matrices for
S ,T : Rn → R

m, respectively, then the standard matrix for S + T

is A+ B .
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Likewise, if we define

cA =
(

ca1 ca2 · · · can
)

= (caij),

and T : Rn → R
m has standard matrix A, then the standard

matrix of cT is cA.

Theorem 3 immediately implies:

Theorem 4

Let A, B and C be m × n matrices, and let c , d ∈ R be scalars.

Then:
1. A+ B = B + A 4. c(A+ B) = cA+ cB

2. (A+ B) + C = A+ (B + C ) 5. (c + d)A = cA+ dA

3. A+ 0 = 0 + A = A 6. c(dA) = (cd)A

Here 0 denotes the m × n zero matrix, which is the standard
matrix of the zero transformation.
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We have
(

0 3 −1
4 0 7

)

+

(

−6 2 1
1 2 3

)

=

(

−6 5 0
5 2 10

)

and

3





1 2 3
−5 −4 −3
1 0 −1



 =





3 6 9
−15 −12 −9
3 0 −3



 .

Notice that for any scalar a ∈ R we have











a

a

. . .

a











= a











1
1

. . .

1











= aI .
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Matrix addition and scalar multiplication interact with the matrix
vector product in the way one would hope.

For instance, if A and B are m × n, and S(x) = Ax, T (x) = Bx,
then A+ B is the matrix of S + T .

Thus

(A + B)x = (S + T )(x) = S(x) + T (x) = Ax+ Bx.

Scalar multiplication also interacts nicely with the matrix-vector
product.

Theorem 5

Let A,B be m × n matrices, let x ∈ R
n and let a ∈ R. Then:

1. (A+ B)x = Ax+ Bx

2. (cA)x = c(Ax) = A(cx)
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Example

Recall the rental car homework problem in which you were asked
to solve the equation Ax = x.

We can now write

Ax = x = Ix ⇔ Ax− Ix = 0 ⇔ (A− I )x = 0,

which neatly explains the addition of −1 to the diagonal entries of
A.

The more general equation Ax = λx will arise in our study of
eigenvalues and eigenvectors. Analogous reasoning shows that

Ax = λx = λIx ⇔ (A− λI )x = 0,

which can be solved by row reducing A− λI .
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