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1 Integration by Parts

Given two functions f , g defined on an open interval I, let f = f (0), f (1), f (2), . . . , f (n) denote
the first n derivatives of f 1 and g = g(0), g(−1), g(−2), . . . , g(−n) denote n antiderivatives of g.2

Our main result is the following generalization of the standard integration by parts rule.3

Theorem 1. For n ∈ N,∫
f(x)g(x) dx =

n−1∑
j=0

(−1)jf (j)(x) g(−(j+1))(x) + (−1)n
∫
f (n)(x)g(−n)(x) dx. (1)

Proof. We induct on n. When n = 1 the formula becomes∫
f(x)g(x) dx = f(x)g(−1)(x)−

∫
f (1)(x)g(−1)(x) dx

which is the result of integration by parts with the choices u = f and dv = g dx.
So now assume the formula (1) holds for some n ≥ 1. In the integral we integrate by

parts, taking u = f (n) and dv = g(−n) dx. Then du = f (n+1) dx and v = g(−(n+1)) so that∫
f (n)(x)g(−n)(x) dx = f (n)(x)g(−(n+1))(x)−

∫
f (n+1)(x)g(−(n+1))(x) dx.

Substituting this into (1) and collecting the “integrated” term into the sum we end up with

n∑
j=0

(−1)jf (j)(x) g(−(j+1))(x) + (−1)n+1

∫
f (n+1)(x)g(−(n+1))(x) dx,

which is precisely (1) with n+ 1 replacing n. Hence the n+ 1 case holds if the n case does.
By induction, the formula is valid for all n ∈ N.

As an immediate consequence we have the next result, which tells us how to obtain the
antiderivative of fg completely in the case that f eventually differentiates to zero, i.e. when
f is a polynomial.

1We assume f is sufficiently smooth to be differentiated arbitrarily often on I.
2For this we need only assume that g is continuous on I.
3Keep in mind that for a function f , an exponent in parentheses indicates a derivative of a certain order, with negative

exponents indicating antiderivatives. We are not simply raising f to powers.
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Corollary 1. Suppose that f (n) ≡ 0. Then∫
f(x)g(x) dx =

n−1∑
j=0

(−1)jf (j)(x) g(−(j+1))(x) + C.

The result of Theorem 1 is perhaps most easily implemented using a table. In one column
we list f and its first n derivatives. In an adjacent column we list g and its first n antideriva-
tives. We label the columns as u and dv in keeping with the standard notation used when
integrating by parts. We then multiply diagonally down and to the right to construct the
summands of (1), and then alternately add and subtract them to get the correct signs. At
the final level, we multiply directly across, continue the alternation of signs, but integrate
the resulting term to get the integral appearing in (1). See the diagram below.

u dv

f
+

%%

g

f (1)

−

%%

g(−1)

f (2)

+

%%

g(−2)

f (3)

−

$$

g(−3)

...
...

f (n−1)

(−1)n−1

%%

g(−(n−1))

f (n)

(−1)n
// g(−n)

Each solid arrow indicates a multiplication between the terms at either end, the result of
which is then added or subtracted to the to the antiderivative according to the sign shown
with the arrow. The final dashed arrow indicates that the two terms at either end are to
be multiplied together, integrated, and then added or subtracted from the antiderivative
according to the sign of (−1)n. This gives us

fg(−1) − f (1)g(−2) + f (2)g(−3) − f (3)g(−4) + · · ·+ (−1)n−1f (n−1)g(−n) + (−1)n
∫
f (n)g(−n) dx,

in agreement with (1).

Example 1. Antidifferentiate (x3 + 2x− 1) cos(4x).

Solution. We take f(x) = x3 + 2x− 1, g(x) = cos(4x) and construct the table above:
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u dv

x3 + 2x− 1
+

''

cos(4x)

3x2 + 2

−

''

1
4

sin(4x)

6x

+

''

−1
16

cos(4x)

6

−

''

−1
64

sin(4x)

0
+
// 1
256

cos(4x)

The antiderivative is therefore

1

4
(x3 + 2x− 1) sin(4x) +

1

16
(3x2 + 2) cos(4x)− 3x

32
sin(4x)− 3

128
cos(4x) +

∫
0 dx =(

1

4
x3 +

13

32
x− 1

4

)
sin(4x) +

(
3

16
x2 +

13

128

)
cos(4x) + C.

�

Example 2. Compute

∫
e2x sin(3x) dx.

Solution. We take f(x) = sin(3x) and g(x) = e2x and construct the table of derivatives
and antiderivatives:

u dv

sin(3x)
+

%%

e2x

3 cos(3x)

−

%%

1
2
e2x

−9 sin(3x)
+

// 1
4
e2x

This tells us that∫
e2x sin(3x) dx =

1

2
e2x sin(3x)− 3

4
e2x cos(3x)− 9

4

∫
e2x sin(3x) dx.

In other words

13

4

∫
e2x sin(3x) dx =

1

2
e2x sin(3x)− 3

4
e2x cos(3x) + C
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so that ∫
e2x sin(3x) dx =

1

13
e2x (2 sin(3x)− 3 cos(3x)) + C.

�

Example 3. Find the 2-periodic cosine expansion of the function x2(1− x), 0 < x < 1.

Solution. The half-range Fourier coefficients are given by

a0 =
2

2 · 1

∫ 1

0

x2(1− x) dx =
x3

3
− x4

4

∣∣∣∣1
0

=
1

12

and for n ≥ 1

an =
2

1

∫ 1

0

x2(1− x) cos(nπx) dx.

We compute the integral here using the tabular technique, with f(x) = x2 − x3 and g(x) =
cos(nπx):

u dv

x2 − x3

+

''

cos(nπx)

2x− 3x2

−

''

1
nπ

sin(nπx)

2− 6x

+

''

−1
n2π2 cos(nπx)

−6

−

''

−1
n3π3 sin(nπx)

0
+
// 1
n4π4 cos(nπx)

Hence

an = 2

(
(x2 − x3)

sin(nπx)

nπ
+ (2x− 3x2)

cos(nπx)

n2π2
− (2− 6x)

sin(nπx)

n3π3
+ 6

cos(nπx)

n4π4

)∣∣∣∣1
0

= 2

(
−cos(nπ)

n2π2
+ 6

cos(nπ)

n4π4
− 6

1

n4π4

)
= 2

(−1)n+1

n2π2
+ 12

(−1)n − 1

n4π4
.

Consequently the cosine series is

1

12
+
∞∑
n=1

(
2

(−1)n+1

n2π2
+ 12

(−1)n − 1

n4π4

)
cos(nπx).
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The plots below show the 10th, 20th, 30th and 40th partial sums of this series on the interval
0 ≤ x ≤ 1, which more closely resemble f(x) = x2(1− x) as the number of terms increases,
as they should.

�

Example 4. There are numerous situations where repeated integration by parts is called
for, but in which the tabular approach must be applied repeatedly. For example, consider
the integral ∫

(log x)2 dx.

If we attempt tabular integration by parts with f(x) = (log x)2 and g(x) = 1 we obtain

u dv

(log x)2

+

  

1

2 log x

x −
// x
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so that the antiderivative is

x(log x)2 − 2

∫
log x dx.

There’s no point in continuing the table, for if we do so we find that where ever we decide to
terminate our columns we will be faced with the antiderivative

∫
log x dx. Evaluating this

requires integration by parts. With the choices f(x) = log x and g(x) = 1 we obtain the
table

u dv

log x

+

��

1

1

x −
// x

so that ∫
log x dx = x log x−

∫
dx = x log x− x+ C.

Assembling this with our previous piece we find that∫
(log x)2 dx = x(log x)2 − 2x log x+ 2x+ C.

�

2 Application: Integrals of the Form
∫
P (x)T (αx) dx where P is a

Polynomial and T is Sine or Cosine

Consider an integral of the form
∫
P (x)T (αx) dx where P is a polynomial and T is either sine

or cosine. Since P (n) ≡ 0 for every sufficiently large n, the corollary to Theorem 1 applies,
i.e. the integral term in Theorem 1 reduces to a constant. Moreover, since the derivatives of
P are themselves polynomials while the antiderivatives of sine (or cosine) cycle through the
functions sine, cosine and their negatives, if we integrate by parts taking f(x) = P (x) and
g(x) = T (αx), we find that the antiderivative has the form4

A(x) cos(αx) +B(x) sin(αx) + C (2)

where A and B are polynomials. There are two observations that can be made here.

Observation 1: A and B can be computed algebraically, should one wish to avoid integra-
tion by parts. First, if we take the derivative of (2) we obtain (A′(x) + αB(x)) cos(αx) +
(−αA(x) +B′(x)) sin(αx). Now suppose for the sake of argument that T is cosine.

Then we must have A′ + αB = P and −αA + B′ = 0. Differentiating the first equation,
multiplying the second by −α and adding we obtain A′′ + α2A = P ′. Assuming α is real,
the characteristic equation of the complementary homogeneous ODE A′′ + α2A = 0 has
only complex roots. Hence, if we assume A is a polynomial with degA = degP ′, we are

4This is not the only way to prove this.
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guaranteed to find a unique solution to A′′ + α2A = P ′ by the method of undetermined
coefficients. Once A is in hand, B can be found from the relationship B = α−1(P − A′).

It’s worth noting, however, that integration by parts is probably far more efficient than
the procedure we’ve just described.

Observation 2: Once we’ve computed
∫
P (x) sin(αx) dx either through integration by parts

or by using the procedure of the preceding observation, the antiderivative
∫
P (x) cos(αx) dx

can be obtained from the antiderivative
∫
P (x) sin(αx) dx by simply differentiating every

appearance of sine and cosine (formally), i.e. by replacing sine with cosine and cosine with
negative sine.

To see this, suppose that∫
P (x) sin(αx) dx = A(x) cos(αx) +B(x) sin(αx) + C. (3)

Perform the formal differentiation of the trigonometric functions to obtain

−A(x) sin(αx) +B(x) cos(αx) + C. (4)

Now derive:
(−A′(x)− αB(x)) sin(αx) + (−αA(x) +B′(x)) cos(αx).

This doesn’t tell us much until we derive equation (3), too:

P (x) sin(αx) = (−αA(x) +B′(x)) sin(αx) + (A′(x) + αB(x)) cos(αx).

Comparison of both sides shows that P (x) = −αA(x)+B′(x) and A′(x)+αB(x) = 0. Hence
the derivative of (4) is exactly P (x) cos(αx), as claimed. We summarize these findings with
the following diagram.∫

P (x) sin(αx) dx

d
��

= A(x) cos(αx)

d

��

+ B(x) sin(αx)

d

��∫
P (x) cos(αx) dx = −A(x) sin(αx) + B(x) cos(αx)
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