Exercise 1. Let $a, b \in \mathbb{Z}$. Recall the "useful fact" that if $|b|>1$ and $a \neq 0$, then $|a|<|a b|$. Prove that the converse implication is also true.

Exercise 2. Give a careful proof that the only elements of \mathbb{Z} with multiplicative inverses are the members of the set

$$
\mathbb{Z}^{\times}:=\{ \pm 1\} .
$$

Exercise 3. Given pairs of natural numbers $(a, b),(c, d) \in \mathbb{N} \times \mathbb{N}$, define a relation \sim on $\mathbb{N} \times \mathbb{N}$ by

$$
(a, b) \sim(c, d) \Leftrightarrow a+d=b+c .
$$

a. Show that \sim is an equivalence relation using only the operation + .
b. Let $\overline{(a, b)}$ denote the equivalence class of (a, b) under \sim, and let $(\mathbb{N} \times \mathbb{N}) / \sim$ be the set of all equivalence classes. Show that the rule $\overline{(a, b)} \mapsto a-b$ gives a well-defined bijection between $(\mathbb{N} \times \mathbb{N}) / \sim$ and $\mathbb{Z} .{ }^{1}$
c. What happens if we replace + in the definition of \sim by \times ?

In Zermelo-Fraenkel set theory, which is one way to axiomatize modern mathematics, every object is a set, and the axioms give rules for how these sets behave. Starting with these axioms alone, one defines \mathbb{N} to be the set of cardinalities of nonempty finite sets. So where does \mathbb{Z} comes from? The set $(\mathbb{N} \times \mathbb{N}) / \sim$ in Exercise 3 is actually the definition of \mathbb{Z} as a set, so that part \mathbf{b} is completely circular. Nonetheless, I think it demonstrates the intuition behind the decision to declare that $(\mathbb{N} \times \mathbb{N}) / \sim$ is the set of integers. It isn't difficult to also define addition and multiplication in $(\mathbb{N} \times \mathbb{N}) / \sim$ using only the operation + in \mathbb{N}, but checking that everything is well-defined is a bit tedious. The end result is the familiar ring $(\mathbb{Z},+, \times)$, built formally from first principles.

[^0]
[^0]: ${ }^{1}$ If you aren't sure what "well-defined" means, please ask. It's a very important technical term.

