Exercise 1. Let $n \in \mathbb{N}$ and let $a, b \in \mathbb{Z}$. Prove that a and b leave the same remainder when divided by n if and only if $n \mid a-b$.

Exercise 2. Given $(a, b),(c, d) \in \mathbb{Z} \times \mathbb{N}$, define $(a, b) \sim(c, d)$ if and only if $a d=b c$. One can show (and you should check) that \sim is an equivalence relation on $\mathbb{Z} \times \mathbb{N}$. An equivalence class under \sim is called a fraction, and we let $\frac{a}{b}$ denote the fraction containing (a, b). Then, by definition,

$$
\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\,(a, b) \in \mathbb{Z} \times \mathbb{N}\right\}
$$

is the set of all fractions (is this starting to sound familiar?). Show that the map $\mathbb{Z} \rightarrow \mathbb{Q}$ defined by $n \mapsto \frac{n}{1}$ is injective.

Strictly speaking, an integer is not a rational number. However, Exercise 3 shows that there is a bijection between \mathbb{Z} and the set

$$
\mathbb{Z}_{\mathbb{Q}}=\left\{\left.\frac{n}{1} \right\rvert\, n \in \mathbb{Z}\right\} .
$$

We will call a fraction in $\mathbb{Z}_{\mathbb{Q}}$ a rational integer.
Exercise 3. Let $a \in \mathbb{Z}$ and let $b \in \mathbb{N}$.
a. Identifying a and b with their images in $\mathbb{Z}_{\mathbb{Q}}$, show that the equation $a=b \cdot \frac{a}{b}$ holds.
b. Show that $b \mid a$ if and only if $\frac{a}{b} \in \mathbb{Z}_{\mathbb{Q}}$.
c. Show that when $b \mid a, \frac{a}{b}$ is (the rational integer corresponding to) the divisor of a complementary to b. This is handy, since it provides (meaningful) notation for the complementary divisor that doesn't introduce a third variable.

Exercise 4. For any real number x, let $\lfloor x\rfloor$ denote the greatest integer not exceeding x, which is the unique integer satisfying the inequality

$$
\lfloor x\rfloor \leq x<\lfloor x\rfloor+1 .
$$

Let $a \in \mathbb{Z}$ and let $b \in \mathbb{N}$, and use the division algorithm to write $a=b q+r$ with $q, r \in \mathbb{Z}$ and $0 \leq r<b$. Prove that $q=\left\lfloor\frac{a}{b}\right\rfloor$ and derive a similar expression for r. Explain how you can use this to compute q and r using a (very simple) hand held calculator.

Exercise 5. Let $a, b \in \mathbb{N}$. Prove that the natural numbers $\frac{a}{(a, b)}$ and $\frac{b}{(a, b)}$ are relatively prime.

