Number Theory
Assignment 2
Spring 2022

Exercise 1. Let $a \in \mathbb{Z}$. Show that for any $n \in \mathbb{Z},(a, a+n)$ divides n. Conclude that $(a, a+1)=1$.

Exercise 2. If $a, b \in Z$ are not both zero, prove that $(2 a-3 b, 4 a-5 b)$ divides b. Conclude that $(2 a+3,4 a+5)=1$.

Exercise 3. Use the Euclidean Algorithm to find integers r and s satisfying the following:
a. $(24,138)=24 r+138 s$.
b. $(119,272)=119 r+272 s$.
c. $(1769,2378)=1769 r+2378 s$.

Exercise 4. Let $a, b \in \mathbb{Z}$. Prove that $(a, b)=1$ if and only if there exist $x, y \in \mathbb{Z}$ so that $a x+b y=1$.

Exercise 5. If $a, b, n \in \mathbb{N}$, prove that $(a, b)=1$ if and only if $\left(a^{n}, b^{n}\right)=1$. [Suggestion: Use the preceding exercise.]

