

Number Theory Spring 2022 Assignment 2 Due February 16

**Exercise 1.** Let  $a \in \mathbb{Z}$ . Show that for any  $n \in \mathbb{Z}$ , (a, a + n) divides n. Conclude that (a, a + 1) = 1.

**Exercise 2.** If  $a, b \in Z$  are not both zero, prove that (2a - 3b, 4a - 5b) divides b. Conclude that (2a + 3, 4a + 5) = 1.

**Exercise 3.** Use the Euclidean Algorithm to find integers r and s satisfying the following:

- **a.** (24, 138) = 24r + 138s.
- **b.** (119, 272) = 119r + 272s.
- **c.** (1769, 2378) = 1769r + 2378s.

**Exercise 4.** Let  $a, b \in \mathbb{Z}$ . Prove that (a, b) = 1 if and only if there exist  $x, y \in \mathbb{Z}$  so that ax + by = 1.

**Exercise 5.** If  $a, b, n \in \mathbb{N}$ , prove that (a, b) = 1 if and only if  $(a^n, b^n) = 1$ . [Suggestion: Use the preceding exercise.]