Exercise 1. Without appealing to the existence of irreducible/prime factorizations in \mathbb{N}, use strong induction to prove that every $a>1$ is divisible by an irreducible/prime. This weaker result is sufficient to prove the infinitude of the set of primes using Euclid's familiar argument.

Exercise 2. Let $k \in \mathbb{N}$ and $a>1$. Let $a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$ be the canonical prime factorization of a. Prove that a is a k th power in \mathbb{N} if and only if $k \mid e_{j}$ for all j.

Exercise 3. Given $a, b>1$, explain why it is always possible to assume that the canonical prime factorizations of a and b involve exactly the same primes, provided we allow some of the exponents to be 0 .

Exercise 4. Given $a, b>1$, let

$$
\begin{aligned}
a & =p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}, \\
b & =p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{r}^{f_{r}},
\end{aligned}
$$

be the canonical prime factorizations of a and b, as in the preceding exercise. Prove that

$$
(a, b)=p_{1}^{\min \left\{e_{1}, f_{1}\right\}} p_{2}^{\min \left\{e_{2}, f_{2}\right\}} \cdots p_{r}^{\min \left\{e_{r}, f_{r}\right\}}
$$

Exercise 5. Choose an enumeration $p_{1}, p_{2}, p_{3}, \ldots$ of the primes. Given $a \in \mathbb{N}$ write

$$
a=\prod_{i=1}^{\infty} p_{i}^{e_{i}(a)}
$$

for the canonical prime factorization of a, where $e_{i}(a) \neq 0$ for only finitely many i. Prove that the "unzipping" function $u: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ defined by

$$
a \mapsto\left(\prod_{i=1}^{\infty} p_{i}^{e_{2 i}(a)}, \prod_{i=1}^{\infty} p_{i}^{e_{2 i-1}(a)}\right)
$$

is a bijection.

