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An autonomous system of n first order linear ordinary differential equations has the form

x′
1 = a11x1 + a12x2 + · · ·+ a1nxn,

x′
2 = a21x1 + a22x2 + · · ·+ a2nxn,

...

x′
n = an1x1 + an2x2 + · · ·+ annxn,

(1)

where the xi are all functions of a single common independent variable, say t, and the
coefficients aij are all constants. If we let

x =


x1

x2
...
xn

 and A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 ,

and remember how matrices and vectors are multiplied, then our system takes on the more
compact form

x′ = Ax.

The matrix A is called the coefficient matrix of the given system, and its true utility far
exceeds that of mere notational simplification. In most courses on ODEs one learns how to
use the eigenvalues and eigenvectors of A to determine the general solution to the system
(1). But this is usually completely unmotivated. The alleged solution is given, and the
instructor/textbook then simply checks that it works. We can actually gain more insight
into the eigenvalue/eigenvector technique by proceeding more näıvely.

For example, suppose we are faced with the two-dimensional system

x′ = 5x− 6y, (2)

y′ = 3x− 4y. (3)

The equations in this system are coupled, in the sense that the ODE for x depends on y and
vice versa. One way to solve this system is to decouple it by increasing the order of each
equation. Indeed, if we differentiate both sides of (2) and then substitute in y′ from (3) we
obtain

x′′ = 5x′ − 6y′ = 5x′ − 6(3x− 4y) = 5x′ − 18x+ 24y. (4)

This equation is still coupled to y, but if we multiply (2) by 4 we get

4x′ = 20x− 24y ⇒ 24y = 20x− 4x′.
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Using this in equation (4) we then have

x′′ = 5x′ − 18x+ 24y = 5x′ − 18x+ 20x− 4x′ = x′ + 2x ⇒ x′′ − x′ − 2x = 0.

We now solve this second order equation using the characteristic equation

λ2 − λ− 2 = 0 ⇔ (λ− 2)(λ+ 1) = 0.

The factorization on the right tells us that λ = −1, 2, so that

x = c1e
−t + c2e

2t.

To find y we could rewrite the first equation in our system as 6y = 5x − x′, substitute in
our formula for x, and then divide by 6. We could also implement the decoupling procedure
starting from (3) instead. This eventually tells us that

y′′ − y′ = 2y = 0.

Notice that this is exactly the same second order ODE satisfied by x! It turns out that this
is no mere coincidence.

One way to see this is to recall that e−t and e2t are the so-called fundamental solutions
of x′′ − x′ − 2x = 0. Since x is a linear combination of these two functions, so is x′. And
since y is a linear combination of x and x′, it follows that y is also a linear combination of
e−t and e2t. It now follows from the principle of superposition that y must be a solution of
x′′ − x′ − 2x = 0, too.

Although the technique we employed above ultimately produced the solutions of our
system, it is tedious and somewhat ad hoc. Moreover, it’s not entirely clear how it could
be generalized to higher dimensional systems. And although the decoupled second order
equation x′′ − x′ − 2x = 0 can be used to find both x and y, it appears to be completely
mysterious. It turns out that decoupling the system is actually the source of all of this
confusion, and we gain much more insight into our system by studying its matrix-vector
form.

Let’s return to the general system x′ = Ax. Because differentiation is a linear operation
we have

x′′ = (x′)′ = (Ax)′ = Ax′ = A(Ax) = A2x.

Likewise, this implies

x′′′ = (x′′)′ = (A2x)′ = A2x′ = A2(Ax) = A3x,

and in a similar way we obtain
x(k) = Akx, (5)

where the superscript on the left represents k differentiations of the entires of x. Now recall
that the characteristic polynomial of A is

pA(λ) = det(λI − A) = |λI − A|.

The characteristic polynomial of A is important because its roots are precisely the eigenvalues
of A. It also has another useful feature. An important result in advanced linear algebra
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known as the Cayley-Hamilton theorem asserts that every matrix is a root of its characteristic
polynomial:

pA(A) = 0,

where the zero on the right-hand side is the n× n zero matrix.

For example, if

A =

(
1 2
3 4

)
,

then

pA(λ) =

∣∣∣∣(λ 0
0 λ

)
−
(
1 2
3 4

)∣∣∣∣ = ∣∣∣∣λ− 1 −2
−3 λ− 4

∣∣∣∣ = (λ− 1)(λ− 4)− 6 = λ2 − 5λ− 2.

We then have

pA(A) = A2 − 5A− 2I =

(
7 10
15 22

)
−
(
5 10
15 20

)
−
(
2 0
0 2

)
=

(
0 0
0 0

)
,

in agreement with Cayley-Hamilton.

Let’s see what the Cayley-Hamilton theorem has to say about our linear system of ODEs.
Write

pA(λ) =
n∑

j=0

cjλ
j.

Then Cayley-Hamilton and equation (5) yield

pA(A) =
n∑

i=0

cjA
j = 0 ⇒ 0 = 0x =

n∑
j=0

cjAjx =
n∑

j=0

cjx
(j).

Since the ith entry of the vector on the far right-hand side is c0xi + c1x
′
i + c2x

′′
i + · · · cnx(n)

i ,
we conclude that for any i we have

c0xi + c1x
′
i + c2x

′′
i + · · · cnx(n)

i = 0.

That is, the individual functions that solve the original system are all solutions of the same
nth order linear ODE

c0x+ c1x
′ + c2x

′′ + · · · cnx(n) = 0, (6)

whose characteristic equation is precisely pA(λ) = 0. Another way to write equation (6) is

pA

(
d

dx

)
(x) = 0,

where we interpret “powers” of d
dx

to be higher order derivatives:(
d

dx

)j

=
dj

dxj
.

Let’s go back to our earlier example. The coefficient matrix is

A =

(
5 −6
3 −4

)
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with characteristic polynomial

pA(λ) = |λI − A| =
∣∣∣∣λ− 5 6
−3 λ+ 4

∣∣∣∣ = (λ− 5)(λ+ 4) + 18 = λ2 − λ− 2.

So the solution functions x and y must both solve

pA

(
d

dx

)
(x) =

(
d2

dx2
− d

dx
− 2

)
(x) = x′′ − x′ − 2x = 0,

as we saw above.

The upshot is that if one seeks to solve the original system (1) using as little linear
algebra as possible, but still somewhat efficiently and systematically, simply compute the
characteristic polynomial pA of the coefficient matrix A, and deal directly with the single
nth order ODE pA(

d
dx
)(x) = 0 satisfied by all of the coordinate functions xi.

That being said, let’s think a bit more about the vector approach to solving the system
(1). Let A be its coefficient matrix. A constant α ∈ R is called an eigenvalue of A provided
there is a vector v ̸= 0 so that Av = αv. Any such (nonzero!) vector v is called an
eigenvector of A associated to α. Notice that if Av = αv, then

0 = αv − Av = (αI − A)v.

Since v ̸= 0, this implies that det(αI −A) = 0. Conversely, if det(αI −A) = 0, then αI −A
is not invertible, which is equivalent to saying that (αI − A)v = 0 (or Av = αv) for some
v ̸= 0. That is, the eigenvalues of A are precisely the roots of the characteristic polynomial
pA(λ) = det(λI − A)!

We have seen that the solutions xi of the system (1) all solve the nth order ODE pA(
d
dx
) =

0. The characteristic equation of this system is just pA(λ) = 0, and its solutions are the
eigenvalues of A. So if the eigenvalues of A are λ1, λ2, . . . , λn (which we assume to be real
and distinct, for simplicity), then each xi can be written

xi(t) =
n∑

j=1

bije
λjt,

for some constants bij. It follows that

x(t) =
n∑

j=1

eλjt


b1j
b2j
...
bnj

 =
n∑

j=1

eλjtbj,

where

bj =


b1j
b2j
...
bnj

 .
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Now, because x solves x′ = Ax, we find that

n∑
j=1

λje
λjtbj = x′ = Ax = A

(
n∑

j=1

eλjtbj

)
=

n∑
j=1

eλjtAbj.

Subtracting the final expression from the far left-hand side yields

0 =
n∑

j=1

(
λje

λjtbj − eλjtAbj

)
=

n∑
j=1

eλjt (λjbj − Abj) . (7)

This is an identity of vector functions, so it holds for all t. The ith entry in the vector on the
right is a linear combination of the functions eλjt whose coefficients are just the ith entries
of the vectors λjbj − Abj. But according to (7), all of these linear combinations are equal
to 0. But the functions eλjt are linearly independent, since we have assumed the eigenvalues
λj are all distinct. This means all of the coefficients in the ith entries of the right-hand side
of (7) are also zero. So we must have λjj − Abj = 0, or Abj = λjbj, for every j. That is,
each (nonzero) vector bj is an eigenvector of A with eigenvalue λj!

We have therefore deductively arrived at the following well-known result.

Theorem 1. Let A be an n× n matrix with n distinct real eigenvalues λ1, λ2, . . . , λn. Then
the general solution to the linear system of ODEs x′ = Ax is given by

x(t) =
n∑

j=1

eλjtbj, (8)

where each bj is either 0 or an eigenvector of A with eigenvalue λj.

Remarks.

a. Strictly speaking, we have only shown that if x(t) solves x′ = Ax, then it must have
the form given in the theorem. It still remains to prove the converse, namely that any
vector function of the form (8) satisfies x′ = Ax. But this is easy, and is left to the
reader.

b. The statement “bj is either 0 or an eigenvector of A with eigenvalue λj” can be written
a bit more succinctly as “bj belongs to the λj-eigenspace of A.”
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