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An Euler equation is a homogeneous second order linear ODE of the form

x2y′′ + axy′ + by = 0, x > 0, (1)

where a and b are (real) constants. Because the coefficients on y′′ and y′ (x2 and ax, respec-
tively) are not constants, an Euler equation cannot be directly solved using the techniques
for solving constant coefficient equations. However, the general solution to an Euler equation
can easily be obtained by making the change of (independent) variables x = et (or t = lnx)
and then reducing it to a constant coefficient equation.

Since the prime notation y′ denotes the derivative of y with respect to x, we use ẏ to
denote differentiation with respect to t. The chain rule then gives

y′ =
dy

dx
=

dy

dt

dt

dx
= ẏx−1,

y′′ =
d

dx
(y′) =

d

dx
(ẏx−1)

=
dẏ

dx
x−1 − ẏx−2 =

dẏ

dt

dt

dx
x−1 − ẏx−2,

= ÿx−2 − ẏx−2 = (ÿ − ẏ)x−2.

Substituting these expressions for y′ and y′′ into the Euler equation (1) yields

(ÿ − ẏ) + aẏ + by = 0 ⇔ ÿ + (a− 1)ẏ + by = 0, (2)

which is a second order homogenous linear ODE for y (in the independent variable t) with
constant coefficients! The characteristic equation for ÿ + (a − 1)ẏ + by = 0 is called the
indicial equation of (1), and is traditionally written

ρ2 + (a− 1)ρ+ b = 0. (3)

The roots of the indicial equation are called the indices of (1). Historically the term index
was used as a synonym for exponent, which is precisely how the roots of the indicial equation
(3) are used to solve (1).

If (3) has two real roots ρ1 ̸= ρ2, then the general solution to (2) is

y = c1e
ρ1t + c2e

ρ2t.

Since t = lnx, this means the general solution to (1) in this case is

y = c1x
ρ1 + c2x

ρ2 .
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When (3) has a single repeated real root ρ1, the general solution to (2) is then

y = (c1t+ c2)e
ρ1t.

Substituting t = lnx this becomes the general solution

y = (c1 lnx+ c2)x
ρ1 .

to (1).
Finally, if (3) has nonreal complex roots ρ = α± iβ (β ̸= 0), then the general solution to

(2) is
y = eαt(c1 cos βt+ c2 sin βt).

When we set t = lnx this becomes the somewhat more complicated expression

y = xα(c1 cos(β lnx) + c2 sin(β lnx)),

which is the general solution to (1) in this case. We summarize our findings below.

Theorem 1. The general solution of the Euler equation

x2y′′ + axy′ + by = 0, x > 0, (4)

is determined by the roots of its indicial equation

ρ2 + (a− 1)ρ+ b = 0 (5)

as follows.

a. If the indicial equation (5) has two real roots ρ = ρ1, ρ2, then the general solution of the
Euler equation (4) is given by

y = c1x
ρ1 + c2x

ρ2 ,

where c1 and c2 are arbitrary (real) constants.

b. If the indicial equation (5) has a single (repeated) real root ρ = ρ1, then the general
solution of the Euler equation (4) is given by

y = (c1 lnx+ c2)x
ρ1 ,

where c1 and c2 are arbitrary (real) constants.

c. If the indicial equation has (nonreal) complex roots ρ = α± iβ (β ̸= 0), then the general
solution of the Euler equation (4) is given by

y = xα(c1 cos(β lnx) + c2 sin(β lnx)),

where c1 and c2 are arbitrary (real) constants.

Example. Solve the Euler equation

x2y′′ − 2xy′ + 2y = 0, x > 0.
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Solution. The indicial equation is

ρ2 + (−2− 1)ρ+ 2 = ρ2 − 3ρ+ 2 = 0.

Because
ρ2 − 3ρ+ 2 = (ρ− 1)(ρ− 2),

the indicial equation has the distinct real roots ρ = 1, 2. According to Theorem 1, this means
the general solution of the ODE is

y = c1x+ c2x
2.

Example. Solve the Euler equation

x2y′′ + 5xy′ + 4y = 0, x > 0.

Solution. The indicial equation is

ρ2 + (5− 1)ρ+ 4 = ρ2 + 4ρ+ 4 = 0.

Because
ρ2 + 4ρ+ 4 = (ρ+ 2)2,

the indicial equation has the single repeated roots ρ = −2. According to Theorem 1, this
means the general solution of the ODE is

y = (c1 lnx+ c2)x
−2.

Example. Solve the Euler equation

x2y′′ + xy′ + 3y = 0, x > 0.

Solution. The indicial equation is

ρ2 + (1− 1)ρ+ 3 = ρ2 + 3 = 0,

whose roots are ρ = ±i
√
3 = 0 ± i

√
3. According to Theorem 1, this means the general

solution of the ODE is

y = c1 cos(
√
3 lnx) + c2 sin(

√
3 lnx).

The factor xα of Theorem 1 isn’t present since in this case α = 0 and x0 = 1 for x > 0.
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