Partial Differential Equations Spring 2023

Assignment 3.1
Due January 31

Exercise 1. If u is a function of x and t with continuous second order partial derivatives, and we set

$$
\alpha=a x+b t, \quad \beta=m x+n t
$$

with $a n-b m \neq 0$, use the chain rule to show that

$$
u_{t t}=b^{2} u_{\alpha \alpha}+2 b n u_{\alpha \beta}+n^{2} u_{\beta \beta} .
$$

[Suggestion. Apply the chain rule once to compute u_{t} in terms of u_{α} and u_{β}, as we did in class. Then apply the chain rule again, in the exact same way, to compute $\left(u_{\alpha}\right)_{t}$ and $\left(u_{\beta}\right)_{t}$.]

Exercise 2. Solve the 1-D wave equation (for an infinitely long string) subject to the given initial data.
a. $\quad u(x, 0)=f(x), u_{t}(x, 0)=0$
b. $\quad u(x, 0)=\frac{1}{1+x^{2}}, u_{t}(x, 0)=-2 x e^{-x^{2}}$
c. $u(x, 0)=e^{-x^{2}}, u_{t}(x, 0)=\frac{x}{\left(1+x^{2}\right)^{2}}$

Exercise 3. If λ is a constant, verify that $u(x, t)=\sin (\lambda x) \cos (\lambda c t)$ solves the 1-D wave equation $u_{t t}=c^{2} u_{x x}$. For which values of λ does this function also satisfy the boundary conditions $u(0, t)=u(L, t)=0$?

Exercise 4. Suppose that $u(x, t)$ and $v(x, t)$ have continuous second order partial derivatives and are related through the equations

$$
\frac{\partial u}{\partial t}=-A \frac{\partial v}{\partial x} \text { and } \frac{\partial v}{\partial t}=-B \frac{\partial u}{\partial x}
$$

for some positive constants A and B. Show that u and v are both solutions of the 1-D wave equation with $c=\sqrt{A B}$.

