Partial Differential Equations Spring 2023

Assignment 3.2
Due January 31

Exercise 1. Textbook exercise 2.1.15 [Suggestion: Consider $F(x+2 \pi)-F(x)$.]
Exercise 2. Textbook exercises 2.2.1-2.2.4

Given (integrable) functions f and g on the interval $[a, b]$, recall that we defined their inner product to be

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x \text {. }
$$

We say f and g are orthogonal (on $[a, b]$) if $\langle f, g\rangle=0$.
Exercise 3. The Legendre polynomials $P_{n}(x)$ are defined recursively by

$$
\begin{gathered}
P_{0}(x)=1, \quad P_{1}(x)=x \\
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x) \text { for } n \geq 1 .
\end{gathered}
$$

a. Compute $P_{2}(x), P_{3}(x)$ and $P_{4}(x)$.
b. Show that $P_{0}, P_{1}, P_{2}, P_{3}$ and P_{4} are pairwise orthogonal on the interval $[-1,1]$.
c. Compute $\left\langle P_{n}, P_{n}\right\rangle$ for $n=0,1,2,3,4$, the inner product being taken over $[-1,1]$.

Exercise 4. Show that any (integrable) even function is orthogonal to any (integrable) odd function on $[-a, a]$.

