Partial Differential Equations Spring 2023

PROJECT 1 Due March 22

Consider the heat boundary value problem

$$u_{t} = c^{2}u_{xx}, t > 0, \ 0 < x < L, (1)$$

$$u_{x}(0,t) = \kappa_{1}u(0,t), t > 0, (2)$$

$$u_{x}(L,t) = -\kappa_{2}u(L,t), (3)$$

in which κ_1 and κ_2 are positive constants. Solutions to this problem describe the flow of thermal energy in a thin conductive rod which is radiating energy at both of its endpoints.

Exercise 1. Use separation of variables to show that any solution to (1) and (2) of the form u(x,t) = X(x)T(t) must satisfy

$$T' - kc^2 T = 0,$$

$$X'' - kX = 0, \quad X'(0) = \kappa_1 X(0), \quad X'(L) = -\kappa_2 X(L),$$

where k is the separation constant.

Exercise 2. Show that if X is nontrivial, then $k = -\mu^2 < 0$ and $\mu > 0$ must solve the equation

$$\tan(\mu L) = \frac{(\kappa_1 + \kappa_2)\mu}{\mu^2 - \kappa_1 \kappa_2}.$$

Exercise 3. Show that the corresponding solutions are

$$X_n(x) = \mu_n \cos(\mu_n x) + \kappa_1 \sin(\mu_n x)$$

and

$$T_n(t) = e^{-c^2 \mu_n^2 t}$$

for $n \in \mathbb{N}$, where μ_n is the *n*th positive solution to the equation

$$\tan(\mu L) = \frac{(\kappa_1 + \kappa_2)\mu}{\mu^2 - \kappa_1 \kappa_2}.$$
(1)

Exercise 4. Use a graph to show that equation (1) has infinitely many positive solutions. Approximate $\mu_1, \mu_2, \mu_3, \mu_4$ and μ_5 in the case that $L = \pi$ and $\kappa_1 = \kappa_2 = 1$.

Exercise 5. Show that the functions X_1, X_2, X_3, \ldots are pairwise orthogonal on the interval [0, L].

Exercise 6. Conclude that the complete solution to the heat problem is given by

$$u(x,t) = \sum_{n=1}^{\infty} c_n T_n(t) X_n(x), \qquad (2)$$

where

$$c_n = \frac{1}{\tau_n} \int_0^L f(x) X_n(x) \, dx$$
 and $\tau_n = \int_0^L X_n^2(x) \, dx.$

Exercise 7. Using a partial sum with 100 terms, animate the solution (2) in time, taking c = 1, $L = \pi$, $\kappa_1 = 2$, $\kappa_2 = 1$, and $f(x) = x^2(\pi - x)$. Use the time interval $0 \le t \le 10$ with time steps of size $\Delta t = 0.1$.

Instructions

- You may work in a group of up to 3 students. Each student in a group is expected to contribute equally to the project. If you feel that one of your group members is not doing his or her share, please let me know.
- Written solutions to the exercises must be typed into a single document, and exported in PDF format. The plot for Exercise 4 should be included in the body of this document.
- The animation for Exercise 7 may be coded using any language/program you prefer (I've been using Maple in class). The animation itself must be submitted as an independent file using a standard graphics file format (GIF, for instance). The code itself must be submitted as a separate text file.
- Each group must upload a single Zip file (containing the 3 files described above) to http://tlearn.trinity.edu no later than midnight on March 22. The name of each group's Zip file should include the last names of every member of that group. Late projects *will not be accepted*.
- Failure to adhere to these guidelines will be penalized. If you have any questions or concerns, please ask me.